In a recent study it has been found that birds' bills are filled with complex structures called nasal conchae that moderate the temperature of air being inhaled.
The same also helps in reclaiming water from air being exhaled and thus help them meet the demands of climate.
The researchers used CT scans to examine the conchae of two Song Sparrow subspecies, one that lives in warm, dry sand dunes and one that lives in moister habitats farther inland.
In this first comparison of conchae structure from birds living along a moisture gradient, the conchae of the dune-dwelling sparrows had a larger surface area and were situated farther out in the bill than those of their inland relatives, hypothetically increasing their beaks' ability to cool air and recapture water.
The researcher Raymond Danner of the University of North Carolina Wilmington and his colleagues from Cornell University and the National Museum of Natural History used Song Sparrow specimens that were collected in Delaware and the District of Columbia and preserved in ethanol and iodine to help soft tissues show up in scans.
"We had been studying the function of the bird bill as a heat radiator, with a focus on heat loss from the external surface and adaptation to local climates, when we began to wonder about the thermoregulatory processes that occur within the bill," says Danner.
"I remember the entire team assembled for the first time, huddled around a computer and looking in amazement at the first scans. The high resolution scans revealed many structures that we as experienced ornithologists had never seen or even imagined, and we were immediately struck by the beauty of the ornately structured anterior conchae and the neatly scrolled middle conchae," he added.
"This study highlights the remarkable complexity of the rostral conchae in songbirds. This complexity has gone largely unnoticed due to the ways in which most birds are collected and preserved," according to Jason Bourke, a researcher from the North Carolina Museum of Natural Sciences who was not involved in the research. "Thanks to the use of innovative techniques like diceCT, we are now able to really appreciate just how complicated bird noses can be."
The study has been published in the The Auk: Ornithological Advances journal.
Disclaimer: No Business Standard Journalist was involved in creation of this content
You’ve reached your limit of {{free_limit}} free articles this month.
Subscribe now for unlimited access.
Already subscribed? Log in
Subscribe to read the full story →
Smart Quarterly
₹900
3 Months
₹300/Month
Smart Essential
₹2,700
1 Year
₹225/Month
Super Saver
₹3,900
2 Years
₹162/Month
Renews automatically, cancel anytime
Here’s what’s included in our digital subscription plans
Exclusive premium stories online
Over 30 premium stories daily, handpicked by our editors


Complimentary Access to The New York Times
News, Games, Cooking, Audio, Wirecutter & The Athletic
Business Standard Epaper
Digital replica of our daily newspaper — with options to read, save, and share


Curated Newsletters
Insights on markets, finance, politics, tech, and more delivered to your inbox
Market Analysis & Investment Insights
In-depth market analysis & insights with access to The Smart Investor


Archives
Repository of articles and publications dating back to 1997
Ad-free Reading
Uninterrupted reading experience with no advertisements


Seamless Access Across All Devices
Access Business Standard across devices — mobile, tablet, or PC, via web or app
