Here's why many kidney transplants fail

Image
ANI
Last Updated : May 16 2019 | 1:30 PM IST

Genetic incompatibility may be the reason why many kidney transplants fail, even when donors and recipients are thought to be well-matched, a recent study has observed.

According to the study published in the Journal of Medicine, genomic collision is a genetic incompatibility between the kidney donor and recipient, causing the recipient to mount an immune attack against the donor protein.

The new study could lead to more precise matching between donors and patients, and reduce kidney transplant failures. Also, the same genomic collision may potentially occur in heart, liver, and lung transplants.

A successful organ transplant depends on assuring genetic compatibility between the donor and recipient. This is done by matching the donor and recipient's human cell surface proteins that help the immune system determine which cells are foreign as closely as possible.

However, mismatches can only explain about two-thirds of transplants that fail for immunological reasons.

"The rest of those failures are probably due to less common antigens, or so-called minor histocompatibility antigens. However, the identity of most of these antigens and how they lead to rejection is largely not known," said senior co-author Krzysztof Kiryluk.

The study found that kidney recipients with two copies of a deletion near a gene called LIMS1 had a significantly higher risk of rejection when the donor's kidney had at least one full-sized version of the same gene.

Transplanted organs commonly experience a significant period of low oxygenation, which appears to compound the genomic collision.

The findings may apply to other types of organ transplants since LIMS1 is also expressed in the lung, heart, and liver. Similarly, other genetic incompatibilities may also be contributing to the rejection of these organs.

"This project illustrates how genetic analysis is empowering clinical care by enabling better matching and the antibody test potentially presents a noninvasive method for screening for organ rejection in individuals with an existing transplant," explained another co-author Ali G. Gharavi.

"The LIMS1 gene has gone previously undetected in earlier searches, partly due to the limited sample size of previous studies. We estimate that a traditional genome-wide association study would need to analyze a minimum of 13,000 kidney recipients to find this gene," Kiryluk concluded.

Disclaimer: No Business Standard Journalist was involved in creation of this content

*Subscribe to Business Standard digital and get complimentary access to The New York Times

Smart Quarterly

₹900

3 Months

₹300/Month

SAVE 25%

Smart Essential

₹2,700

1 Year

₹225/Month

SAVE 46%
*Complimentary New York Times access for the 2nd year will be given after 12 months

Super Saver

₹3,900

2 Years

₹162/Month

Subscribe

Renews automatically, cancel anytime

Here’s what’s included in our digital subscription plans

Exclusive premium stories online

  • Over 30 premium stories daily, handpicked by our editors

Complimentary Access to The New York Times

  • News, Games, Cooking, Audio, Wirecutter & The Athletic

Business Standard Epaper

  • Digital replica of our daily newspaper — with options to read, save, and share

Curated Newsletters

  • Insights on markets, finance, politics, tech, and more delivered to your inbox

Market Analysis & Investment Insights

  • In-depth market analysis & insights with access to The Smart Investor

Archives

  • Repository of articles and publications dating back to 1997

Ad-free Reading

  • Uninterrupted reading experience with no advertisements

Seamless Access Across All Devices

  • Access Business Standard across devices — mobile, tablet, or PC, via web or app

More From This Section

First Published: May 16 2019 | 1:24 PM IST

Next Story