A study shows that marine stratus clouds could disappear if atmospheric CO2 levels climb high enough, raising global temperatures.
This event -- which could raise surface temperatures by about 8 Kelvin (14 degrees Fahrenheit) globally -- may occur at CO2 concentrations above 1,200 parts per million (ppm), according to the study, which will be published in the journal, 'Nature Geoscience'.
For reference, the current concentration is around 410 ppm and rising. If the world continues burning fossil fuels at the current rate, Earth's CO2 level could rise above 1,200 ppm in the next century.
"I think and hope that technological changes will slow carbon emissions so that we do not actually reach such high CO2 concentrations. But our results show that there are dangerous climate change thresholds that we had been unaware of," said Caltech's Tapio Schneider, Theodore Y. Wu Professor of Environmental Science and Engineering and senior research scientist at the Jet Propulsion Laboratory.
The study could help solve a longstanding mystery in paleoclimatology. Geological records indicate that during the Eocene (around 50 million years ago), the Arctic was frost-free and home to crocodiles.
However, according to existing climate models, CO2 levels would need to rise above 4,000 ppm to heat the planet enough for the Arctic to be that warm. This is more than twice as high as the likely CO2 concentration during this time period.
A warming spike caused by the loss of stratus cloud decks could explain the appearance of the Eocene's hothouse climate.
Stratus cloud decks cover about 20 per cent of subtropical oceans and are prevalent in the eastern portions of those oceans -- for example, off the coasts of California or Peru.
The clouds cool and shade the earth as they reflect the sunlight that hits them back into space. That makes them important for regulating Earth's surface temperature.
The problem is that the turbulent air motions that sustain these clouds are too small to be resolvable in global climate models.
To circumvent the inability to resolve the clouds at a global scale, Schneider and his co-authors, Colleen Kaul and Kyle Pressel of the Pacific Northwest National Laboratory, created a small-scale model of a representative atmospheric section above a subtropical ocean, simulating the clouds and their turbulent motions over this ocean patch on supercomputers.
They observed instability of the cloud decks followed by a spike in warming when CO2 levels exceeded 1,200 ppm. The researchers also found that once the cloud decks vanished, they did not reappear until CO2 levels dropped to levels substantially below where the instability first occurred.
Disclaimer: No Business Standard Journalist was involved in creation of this content
You’ve reached your limit of {{free_limit}} free articles this month.
Subscribe now for unlimited access.
Already subscribed? Log in
Subscribe to read the full story →
Smart Quarterly
₹900
3 Months
₹300/Month
Smart Essential
₹2,700
1 Year
₹225/Month
Super Saver
₹3,900
2 Years
₹162/Month
Renews automatically, cancel anytime
Here’s what’s included in our digital subscription plans
Exclusive premium stories online
Over 30 premium stories daily, handpicked by our editors


Complimentary Access to The New York Times
News, Games, Cooking, Audio, Wirecutter & The Athletic
Business Standard Epaper
Digital replica of our daily newspaper — with options to read, save, and share


Curated Newsletters
Insights on markets, finance, politics, tech, and more delivered to your inbox
Market Analysis & Investment Insights
In-depth market analysis & insights with access to The Smart Investor


Archives
Repository of articles and publications dating back to 1997
Ad-free Reading
Uninterrupted reading experience with no advertisements


Seamless Access Across All Devices
Access Business Standard across devices — mobile, tablet, or PC, via web or app
