Modified radiotherapy less likely to damage healthy cells

Image
ANI
Last Updated : Jul 27 2019 | 9:20 PM IST

A modified way of concentrating radiotherapy dose in tumour while minimising damage to healthy cells has been proposed in a recent research.

The study -- published in the journal of Scientific Reports -- proposes that focusing high-energy particle beams on a small spot deep inside the body could potentially enable clinicians to target cancerous tumour precisely.

External beam radiotherapy involves treating patients with either high energy X-rays or particle beams. Tumour cells are killed by the radiation, which is usually administered in multiple fractions, which are applied daily over several weeks.

Prof Dino Jaroszynski, who led the project, said: "Around half of the population will suffer from cancer at some time in their lives. Of these people, half will be treated using radiotherapy or a combination of radiotherapy and chemotherapy."

One of the challenges in radiotherapy is to deposit a high radiation dose in a way that the dose fully 'conforms' to the tumour to ensure that all cancerous cells are killed while preventing damage to healthy cells. Our study showed that we can very simply focus radiation onto a tumour to irradiate it while reducing the dose in surrounding healthy tissue."

One of the disadvantages of using X-rays in radiotherapy is that these are absorbed in the body and their effects diminish, resulting in a high entrance dose. Proximal and distal doses before and after the tumour can also be as high as, or higher than, the radiation dose in the tumour.

To eradicate the tumour precisely with sufficient radiation to kill all tumour cells, the X-ray beam is often rotated while pointing at the tumour from different directions, while the patient remains stationary.

An effective radiotherapy modality uses heavier particles such as protons and ions. These have the advantage of radiation doses that can be confined to a small region called the "Bragg peak."

"This work presents a comprehensive numerical study of fundamental issues encountered in cancer treatment with very high energy electrons for a wide range of geometries. Results suggest that technology and beam transport systems routinely employed in high-energy particle accelerators could find direct application in this field, expanding the range of tools available for radiotherapy," said Dr Enrico Brunetti, one of the researchers of the study.

Disclaimer: No Business Standard Journalist was involved in creation of this content

*Subscribe to Business Standard digital and get complimentary access to The New York Times

Smart Quarterly

₹900

3 Months

₹300/Month

SAVE 25%

Smart Essential

₹2,700

1 Year

₹225/Month

SAVE 46%
*Complimentary New York Times access for the 2nd year will be given after 12 months

Super Saver

₹3,900

2 Years

₹162/Month

Subscribe

Renews automatically, cancel anytime

Here’s what’s included in our digital subscription plans

Exclusive premium stories online

  • Over 30 premium stories daily, handpicked by our editors

Complimentary Access to The New York Times

  • News, Games, Cooking, Audio, Wirecutter & The Athletic

Business Standard Epaper

  • Digital replica of our daily newspaper — with options to read, save, and share

Curated Newsletters

  • Insights on markets, finance, politics, tech, and more delivered to your inbox

Market Analysis & Investment Insights

  • In-depth market analysis & insights with access to The Smart Investor

Archives

  • Repository of articles and publications dating back to 1997

Ad-free Reading

  • Uninterrupted reading experience with no advertisements

Seamless Access Across All Devices

  • Access Business Standard across devices — mobile, tablet, or PC, via web or app

More From This Section

First Published: Jul 27 2019 | 9:09 PM IST

Next Story