New anti-malarial drugs on their way

Image
ANI Washington D.C
Last Updated : Jul 08 2016 | 2:22 PM IST

The WHO's global target for malaria elimination is 2030 and now, a new study has revealed that a new wave of antimalarial drugs is in preparation.

Malaria caused by the parasite Plasmodium falciparum remains a major public health problem worldwide. As a continuation of previous research targeting Hsp90, a universal molecular chaperone performing vital functions both in the parasite and in human cells, researchers from the universities of Geneva (UNIGE) and Basel, Switzerland, have developed a strategy to identify molecules capable of inhibiting the parasite's protein and causing the destruction of the pathogen, without affecting mammalian cells.

More than 600,000 people die each year from malaria caused by Plasmodium falciparum, the most dangerous member of this family of parasites. The development of new treatments becomes urgent because of arising parasite resistance against current anti-malarial drugs.

One of the most promising targets is the heat shock protein 90 (Hsp90), which plays a central role in the pathogen's life cycle and survival, as well as its resistance to treatments. This protein, which is also present in human cells, functions as a 'molecular chaperone', by assisting other proteins.

"Two years ago, we discovered that the parasite's Hsp90 is slightly different from the human form, because it harbors a "pocket" which is able to bind certain molecules and which is missing in human Hsp90," noted researcher Didier Picard.

Using the customised computerised modelling tools they developed to study the Plasmodium's Hsp90, the biologists have developed an innovative approach to isolate other types of molecules to fight against the parasite and which may be of clinical interest: "We started by testing 172 compounds from a library of molecules already known to exert a toxic effect on cultures of Plasmodium. We then identified compounds whose three-dimensional structure fits the pocket of the pathogen's Hsp90," said first author Tai Wang.

"By using a "real time" modelling technology, we were able to examine how the candidate-molecules behave when in contact with the pocket of the pathogen's chaperone. This allowed us to isolate several compounds, all related to aminoalcohol-carbazoles, interacting in a very stable and sustained manner with the pocket, and causing the destruction of the pathogen without affecting the mammalian cells tested," explained Picard.

The results of this study are essential for the elaboration of a therapeutic strategy, thanks to the identification of several substances as serious candidates for future developments. Indeed, inhibitors of parasites' chaperones offer great prospects as next generation drugs.

The study is published in the Journal of Medicinal Chemistry.

*Subscribe to Business Standard digital and get complimentary access to The New York Times

Smart Quarterly

₹900

3 Months

₹300/Month

SAVE 25%

Smart Essential

₹2,700

1 Year

₹225/Month

SAVE 46%
*Complimentary New York Times access for the 2nd year will be given after 12 months

Super Saver

₹3,900

2 Years

₹162/Month

Subscribe

Renews automatically, cancel anytime

Here’s what’s included in our digital subscription plans

Exclusive premium stories online

  • Over 30 premium stories daily, handpicked by our editors

Complimentary Access to The New York Times

  • News, Games, Cooking, Audio, Wirecutter & The Athletic

Business Standard Epaper

  • Digital replica of our daily newspaper — with options to read, save, and share

Curated Newsletters

  • Insights on markets, finance, politics, tech, and more delivered to your inbox

Market Analysis & Investment Insights

  • In-depth market analysis & insights with access to The Smart Investor

Archives

  • Repository of articles and publications dating back to 1997

Ad-free Reading

  • Uninterrupted reading experience with no advertisements

Seamless Access Across All Devices

  • Access Business Standard across devices — mobile, tablet, or PC, via web or app

More From This Section

First Published: Jul 08 2016 | 2:22 PM IST

Next Story