New find paves way for 'brain-like' computers

Image
ANI Washington D.C. [USA]
Last Updated : Mar 13 2017 | 9:02 AM IST

Turns out, brain is 10 times more active than previously measured.

This UCLA finding could change scientists' understanding of how the brain works and could lead to new approaches for treating neurological disorders and for developing computers that "think" more like humans.

The research focused on the structure and function of dendrites, which are components of neurons, the nerve cells in the brain. Neurons are large, tree-like structures made up of a body, the soma, with numerous branches called dendrites extending outward.

Somas generate brief electrical pulses called "spikes" in order to connect and communicate with each other. Scientists had generally believed that the somatic spikes activate the dendrites, which passively send currents to other neurons' somas, but this had never been directly tested before. This process is the basis for how memories are formed and stored.

But the UCLA team discovered that dendrites are not just passive conduits. Their research showed that dendrites are electrically active in animals that are moving around freely, generating nearly 10 times more spikes than somas. The finding challenges the long-held belief that spikes in the soma are the primary way in which perception, learning and memory formation occur.

"Dendrites make up more than 90 percent of neural tissue," said senior author Mayank Mehta. "Knowing they are much more active than the soma fundamentally changes the nature of our understanding of how the brain computes information. It may pave the way for understanding and treating neurological disorders, and for developing brain-like computers."

Scientists have generally believed that dendrites meekly sent currents they received from the cell's synapse (the junction between two neurons) to the soma, which in turn generated an electrical impulse. Those short electrical bursts, known as somatic spikes, were thought to be at the heart of neural computation and learning. But the new study demonstrated that dendrites generate their own spikes 10 times more often than the somas.

"What we found indicates that such decisions are made in the dendrites far more often than in the cell body, and that such computations are not just digital, but also analog," Mehta said. "Due to technological difficulties, research in brain function has largely focused on the cell body. But we have discovered the secret lives of neurons, especially in the extensive neuronal branches. Our results substantially change our understanding of how neurons compute."

The research appears in the journal Science.

Disclaimer: No Business Standard Journalist was involved in creation of this content

*Subscribe to Business Standard digital and get complimentary access to The New York Times

Smart Quarterly

₹900

3 Months

₹300/Month

SAVE 25%

Smart Essential

₹2,700

1 Year

₹225/Month

SAVE 46%
*Complimentary New York Times access for the 2nd year will be given after 12 months

Super Saver

₹3,900

2 Years

₹162/Month

Subscribe

Renews automatically, cancel anytime

Here’s what’s included in our digital subscription plans

Exclusive premium stories online

  • Over 30 premium stories daily, handpicked by our editors

Complimentary Access to The New York Times

  • News, Games, Cooking, Audio, Wirecutter & The Athletic

Business Standard Epaper

  • Digital replica of our daily newspaper — with options to read, save, and share

Curated Newsletters

  • Insights on markets, finance, politics, tech, and more delivered to your inbox

Market Analysis & Investment Insights

  • In-depth market analysis & insights with access to The Smart Investor

Archives

  • Repository of articles and publications dating back to 1997

Ad-free Reading

  • Uninterrupted reading experience with no advertisements

Seamless Access Across All Devices

  • Access Business Standard across devices — mobile, tablet, or PC, via web or app

More From This Section

First Published: Mar 13 2017 | 8:50 AM IST

Next Story