Researchers have developed a so-called risk adjustment model to predict how often elderly people seek treatment in a healthcare centre or hospital.
The results suggest that the new model is more accurate than traditional regression models commonly used for this task, and can reliably predict how the situation changes over the years. The research results were published in the scientific publication series of Proceedings of Machine Learning Research.
Risk-adjustment models make use of data from previous years and are used to allocate healthcare funds in a fair and effective way. These models are already used in countries like Germany, the Netherlands, and the US. However, this is the first proof-of-concept that deep neural networks have the potential to significantly improve the accuracy of such models.
According to Pekka Marttinen, Assistant Professor at Aalto University and FCAI, "Without a risk adjustment model, healthcare providers whose patients are ill more often than average people would be treated unfairly."
Elderly people are a good example of such a patient group. The goal of the model is to take these differences between patient groups into account when making funding decisions.
According to Yogesh Kumar, the main author of the research article and a doctoral candidate at Aalto University and FCAI, the results show that deep learning may help design more accurate and reliable risk adjustment models. 'Having an accurate model has the potential to save several millions of dollars,' Kumar points out.
The results show that training a deep model does not necessarily require an enormous dataset in order to produce reliable results. Instead, the new model worked better than simpler, count-based models even when it made use of only one-tenth of all available data.
In other words, it provides accurate predictions even with a relatively small dataset, which is a remarkable finding, as acquiring large amounts of medical data is always difficult.
"Our goal is not to put the model developed in this research into practice as such but to integrate features of deep learning models to existing models, combining the best sides of both. In the future, the goal is to make use of these models to support decision-making and allocate funds in a more reasonable way," explains Marttinen.
Disclaimer: No Business Standard Journalist was involved in creation of this content
You’ve reached your limit of {{free_limit}} free articles this month.
Subscribe now for unlimited access.
Already subscribed? Log in
Subscribe to read the full story →
Smart Quarterly
₹900
3 Months
₹300/Month
Smart Essential
₹2,700
1 Year
₹225/Month
Super Saver
₹3,900
2 Years
₹162/Month
Renews automatically, cancel anytime
Here’s what’s included in our digital subscription plans
Exclusive premium stories online
Over 30 premium stories daily, handpicked by our editors


Complimentary Access to The New York Times
News, Games, Cooking, Audio, Wirecutter & The Athletic
Business Standard Epaper
Digital replica of our daily newspaper — with options to read, save, and share


Curated Newsletters
Insights on markets, finance, politics, tech, and more delivered to your inbox
Market Analysis & Investment Insights
In-depth market analysis & insights with access to The Smart Investor


Archives
Repository of articles and publications dating back to 1997
Ad-free Reading
Uninterrupted reading experience with no advertisements


Seamless Access Across All Devices
Access Business Standard across devices — mobile, tablet, or PC, via web or app
