Science of better tasting food

Image
ANI
Last Updated : Nov 10 2019 | 7:05 AM IST

Food Rheology is the science which focuses on understanding the consistency of foodstuff -how it flows in a liquid state- that helps to understand how long food can be stored or remain stable and the texture of the resulting product.

In a study published this week in the journal Physics of Fluids, from AIP Publishing, Taiki Yoshida, Yuji Tasaka and Peter Fischer have developed a better method that builds on a century-old method to test the texture of food.

Improving the texture of food, which includes properties that determine how people experience biting and swallowing, has been an important part of the development of more enjoyable foods.

Traditional methods have been unable to produce information about time-dependent properties. Recently traditional rheological testing methods coupled with inner visualization techniques and ultrasonic imaging have been seen to produce better results.

However, in order to completely understand the properties which can lead to better tasting food, better methods for testing are required to capture the motion inside liquid materials, especially in the case of foods that are complex liquids, like gelled desserts.

To present the updated testing method, researches used a popular Japanese dessert called Fruiche, which includes fruit pulp and whole milk that transforms into a gelled form with an egg carton-shaped structure.

The new method, the ultrasonic spinning rheometry method, developed can measure linear viscoelasticity and phase lag simultaneously in an opaque liquid, and thereby capture information about complex rheological properties.

"Evaluation of food rheology with time dependence is challenging target," researcher Yoshida said.

"Based on the equation of motion, the ultrasonic spinning rheometry method can evaluate instantaneous rheological properties from the measured velocity profiles, so it can present true rheological properties and their time dependence from the perspective of physics of fluids" the researcher said.

The updated method has applications in chemical engineering for understanding polymerisation and dispersion densities, as well as in complex fluids such as clay, with applications in civil engineering and cosmetics.

The researchers plan to further advance the method to include more points at which information can be gathered about the invisible properties of complex liquids.

They also plan to further develop the industrial aspects of the technique, including in-line rheometry for test samples flowing in a pipe.

Disclaimer: No Business Standard Journalist was involved in creation of this content

*Subscribe to Business Standard digital and get complimentary access to The New York Times

Smart Quarterly

₹900

3 Months

₹300/Month

SAVE 25%

Smart Essential

₹2,700

1 Year

₹225/Month

SAVE 46%
*Complimentary New York Times access for the 2nd year will be given after 12 months

Super Saver

₹3,900

2 Years

₹162/Month

Subscribe

Renews automatically, cancel anytime

Here’s what’s included in our digital subscription plans

Exclusive premium stories online

  • Over 30 premium stories daily, handpicked by our editors

Complimentary Access to The New York Times

  • News, Games, Cooking, Audio, Wirecutter & The Athletic

Business Standard Epaper

  • Digital replica of our daily newspaper — with options to read, save, and share

Curated Newsletters

  • Insights on markets, finance, politics, tech, and more delivered to your inbox

Market Analysis & Investment Insights

  • In-depth market analysis & insights with access to The Smart Investor

Archives

  • Repository of articles and publications dating back to 1997

Ad-free Reading

  • Uninterrupted reading experience with no advertisements

Seamless Access Across All Devices

  • Access Business Standard across devices — mobile, tablet, or PC, via web or app

More From This Section

First Published: Nov 10 2019 | 6:59 AM IST

Next Story