Scientists find cause and cure for unsolved food allergy

Image
ANI Washington
Last Updated : Jul 14 2014 | 6:45 PM IST

A new study has claimed to have found the cause behind a mysterious food allergy and have come up with new therapy that can be used to cure it.

Eosinophillic esophagitis (EoE) is a chronic inflammatory disorder of the esophagus. The condition is triggered by allergic hypersensitivity to certain foods and an over-accumulation in the esophagus of white blood cells called eosinophils (part of the body's immune system). EoE can cause a variety of gastrointestinal complaints including reflux-like symptoms, vomiting, difficulty swallowing, tissue scarring, fibrosis, the formation of strictures and other medical complications.

Team of researchers, led by scientists at Cincinnati Children's Hospital Medical Center, identified a molecular pathway specific to epithelial tissue in the esophagus involving a gene called CAPN14, which they found becomes dramatically up-regulated in the disease process.

Epithelial cells help form the membrane of the esophagus. The scientists report that when these cells were exposed to a well-known molecular activator of EoE - an immune hormone called Interleukin 13 (IL-13) - it caused dramatic up-regulation of CAPN14. The researchers said this happened in what they described as an epigenetic hotspot for EoE on the cells' chromosomes.

Rothenberg explained that they used cutting edge genomic analysis of patient DNA as well as gene and protein analysis to explain why people develop EoE. This was a major breakthrough for the condition and gave then a new way to develop therapeutic strategies by modifying the expression of caplain14 and its activity. The results were immediately applicable to EoE and had broad implications for understanding eosinophilic disorders as well as allergies in general.

Rothenberg said that the findings had opened a new way to consider therapeutic options because calpain14 is an enzyme that could be inhibited by drugs, which meant it may be possible to modify the expression and activity of calpain14.

The findings are published in Nature Genetics.

*Subscribe to Business Standard digital and get complimentary access to The New York Times

Smart Quarterly

₹900

3 Months

₹300/Month

SAVE 25%

Smart Essential

₹2,700

1 Year

₹225/Month

SAVE 46%
*Complimentary New York Times access for the 2nd year will be given after 12 months

Super Saver

₹3,900

2 Years

₹162/Month

Subscribe

Renews automatically, cancel anytime

Here’s what’s included in our digital subscription plans

Exclusive premium stories online

  • Over 30 premium stories daily, handpicked by our editors

Complimentary Access to The New York Times

  • News, Games, Cooking, Audio, Wirecutter & The Athletic

Business Standard Epaper

  • Digital replica of our daily newspaper — with options to read, save, and share

Curated Newsletters

  • Insights on markets, finance, politics, tech, and more delivered to your inbox

Market Analysis & Investment Insights

  • In-depth market analysis & insights with access to The Smart Investor

Archives

  • Repository of articles and publications dating back to 1997

Ad-free Reading

  • Uninterrupted reading experience with no advertisements

Seamless Access Across All Devices

  • Access Business Standard across devices — mobile, tablet, or PC, via web or app

More From This Section

First Published: Jul 14 2014 | 6:30 PM IST

Next Story