For the first time ever a group of researchers used ensemble methods based on deep learning 3D networks to deal with international MRI-based adolescent intelligence prediction task.
The researchers from the Skoltech Center for Computational and Data-Intensive Science and Engineering (CDISE) took 4th place in the international MRI-based adolescent intelligence prediction competition. The results of their study by the Skoltech scientists were published in the journal Adolescent Brain Cognitive Development Neurocognitive Prediction.
In 2013, the US National Institutes of Health (NIH) launched the first grand-scale study of its kind in adolescent brain research, Adolescent Brain Cognitive Development - to see if and how teenagers' hobbies and habits affect their further brain development.
Magnetic Resonance Imaging (MRI) is a common technique used to obtain images of human internal organs and tissues. Scientists wondered whether the intelligence level can be predicted from an MRI brain image. The NIH database contains a total of over 11,000 structural and functional MRI images of children aged 9-10.
NIH scientists launched an international competition, making the enormous NIH database available to a broad community for the first time ever. The participants were given the task of building a predictive model based on brain images.
In their recent study, Skoltech researchers focused on predicting the intelligence level, or the so-called "fluid intelligence", which characterizes the biological abilities of the nervous system and has little to do with acquired knowledge or skills.
Importantly, they made predictions for both the fluid intelligence level and the target variable independent from age, gender, brain size or MRI scanner used.
"Our team develops deep learning methods for computer vision tasks in MRI data analysis, amongst other things. In this study, we applied ensembles of classifiers to 3D of super precision neural networks: with this approach, one can classify an image as it is, without first reducing its dimension and, therefore, without losing valuable information," explains CDISE PhD student, Ekaterina Kondratyeva.
The results of the study helped find the correlation between the child's "fluid intelligence" and brain anatomy. Although the prediction accuracy is less than perfect, the models produced during this competition will help shed light on various aspects of cognitive, social, emotional and physical development of adolescents. This line of research will definitely continue to expand.
Disclaimer: No Business Standard Journalist was involved in creation of this content
You’ve reached your limit of {{free_limit}} free articles this month.
Subscribe now for unlimited access.
Already subscribed? Log in
Subscribe to read the full story →
Smart Quarterly
₹900
3 Months
₹300/Month
Smart Essential
₹2,700
1 Year
₹225/Month
Super Saver
₹3,900
2 Years
₹162/Month
Renews automatically, cancel anytime
Here’s what’s included in our digital subscription plans
Exclusive premium stories online
Over 30 premium stories daily, handpicked by our editors


Complimentary Access to The New York Times
News, Games, Cooking, Audio, Wirecutter & The Athletic
Business Standard Epaper
Digital replica of our daily newspaper — with options to read, save, and share


Curated Newsletters
Insights on markets, finance, politics, tech, and more delivered to your inbox
Market Analysis & Investment Insights
In-depth market analysis & insights with access to The Smart Investor


Archives
Repository of articles and publications dating back to 1997
Ad-free Reading
Uninterrupted reading experience with no advertisements


Seamless Access Across All Devices
Access Business Standard across devices — mobile, tablet, or PC, via web or app
