Secrets behind ant's amazing strength revealed

Image
ANI Washington
Last Updated : May 21 2014 | 10:10 AM IST

Researchers are studying biomechanics behind amazing ant strength, which might unlock one of nature's little mysteries and, quite possibly, open the door to advancements in robotic engineering.

Carlos Castro, assistant professor of mechanical and aerospace engineering at Ohio State, said loads are lifted with the mouthparts, transferred through the neck joint to the thorax, and distributed over six legs and tarsi that anchor to the supporting surface.

To better understand the strengths and upper limits of the ant's neck, the researchers reverse-engineered the biomechanics by developing 3-D models of the of the ant's internal and external anatomy.

The models were created by importing X-ray cross-section images (microCT) of ant specimens into a modeling program that assembled the segments and converted them into a mesh frame model of more than 6.5 million elements.

The model then was loaded into a finite element analysis program (Abaqus), an application that creates accurate simulations of complex geometries and forces, and the data was processed on the powerful Oakley Cluster, an array of 8,300 processor cores (Intel Xeon) at the Ohio Supercomputer Center.

The simulations were run in conjunction with lab experiments that used a centrifuge to measure changes in the ants' anatomies under a range of calculated loads. The experiments revealed that the neck joints could withstand loads of about 5,000 times the ant's body weight, and that the ant's neck-joint structure produced the highest strength when its head was aligned straight, as opposed to turned to either side.

The simulations confirmed the joint's directional strength and, consistent with the experimental results, indicated that the critical point for failure of the neck joint is at the neck-to-head transition, where soft membrane meets the hard exoskeleton.

"The neck joint [of the ant] is a complex and highly integrated mechanical system. Efforts to understand the structure-function relationship in this system will contribute to the understanding of the design paradigms for optimized exoskeleton mechanisms," said former Ohio State student Vienny N. Nguyen in her 2012 master's thesis on this research.

The research has been published in the Journal of Biomechanics.

*Subscribe to Business Standard digital and get complimentary access to The New York Times

Smart Quarterly

₹900

3 Months

₹300/Month

SAVE 25%

Smart Essential

₹2,700

1 Year

₹225/Month

SAVE 46%
*Complimentary New York Times access for the 2nd year will be given after 12 months

Super Saver

₹3,900

2 Years

₹162/Month

Subscribe

Renews automatically, cancel anytime

Here’s what’s included in our digital subscription plans

Exclusive premium stories online

  • Over 30 premium stories daily, handpicked by our editors

Complimentary Access to The New York Times

  • News, Games, Cooking, Audio, Wirecutter & The Athletic

Business Standard Epaper

  • Digital replica of our daily newspaper — with options to read, save, and share

Curated Newsletters

  • Insights on markets, finance, politics, tech, and more delivered to your inbox

Market Analysis & Investment Insights

  • In-depth market analysis & insights with access to The Smart Investor

Archives

  • Repository of articles and publications dating back to 1997

Ad-free Reading

  • Uninterrupted reading experience with no advertisements

Seamless Access Across All Devices

  • Access Business Standard across devices — mobile, tablet, or PC, via web or app

More From This Section

First Published: May 21 2014 | 9:54 AM IST

Next Story