Tissue damage is major factor for cell reprogramming: Study

Image
ANI Washingtom D.C [US]
Last Updated : Nov 26 2016 | 4:57 PM IST

According to a recent research, a team from the Spanish National Cancer Research Centre (CNIO) has shown that tissue damage is a relevant factor for cells to go back to an embryonic state.

Published in the journal Science, the technique is based on

introducing a combination of four genes known as OSKM (for the initials of the genes, OCT4, SOX2, KLF4 and MYC), reverts adult cells to an embryonic-like state, and transforms them into pluripotent cells.

However, there are several limitations to this process, such as a very low efficiency and the emergence of a particular type of tumour (known as teratoma), which make cell reprogramming incompatible with its potential clinical use.

Manuel Serrano and the Tumour Suppression Group at the CNIO have been working in this field for years.

Their innovative approach led them to achieve cell reprogramming within a living organism (in this case, a mouse) in 2013, whereas,until then, reprogramming had been only reported using explanted cells out of the organism.

The team analyzed what happens in living tissues, when reprogramming is induced using OSKM.

"The Yamanaka genes are inefficient inducing reprogramming or pluripotency in the highly specialised cells that constitute adult tissues," explained Lluc Mosteiro'

Her observations indicate that tissue damage plays a critical role by complementing the activity of the OSKM genes.

This relationship between damage and reprogramming is mediated by a proinflammatory molecule, interleukin-6 (IL6).

Without its presence, the OSKM genes are far less efficient inducing the reprogramming process.

These findings suggest the following sequence of events: the

expression of the OSKM genes results in damage to the cells;

accordingly, they secrete IL6; the presence of this molecule induces the reprogramming of some neighbouring cells.

Having identified the essential role of IL6, Serrano, Mosteiro and the rest of the team are now working on various pharmacological approaches to enhance the reprogramming efficiency, which could help to improve the regeneration of damaged tissue even in the absence of the Yamanaka genes.

Improving the repairing capacity of tissues could have obvious

implications for regenerative medicine, including the treatment ofmultiple pathologies and degenerative processes associated with ageing.

Disclaimer: No Business Standard Journalist was involved in creation of this content

*Subscribe to Business Standard digital and get complimentary access to The New York Times

Smart Quarterly

₹900

3 Months

₹300/Month

SAVE 25%

Smart Essential

₹2,700

1 Year

₹225/Month

SAVE 46%
*Complimentary New York Times access for the 2nd year will be given after 12 months

Super Saver

₹3,900

2 Years

₹162/Month

Subscribe

Renews automatically, cancel anytime

Here’s what’s included in our digital subscription plans

Exclusive premium stories online

  • Over 30 premium stories daily, handpicked by our editors

Complimentary Access to The New York Times

  • News, Games, Cooking, Audio, Wirecutter & The Athletic

Business Standard Epaper

  • Digital replica of our daily newspaper — with options to read, save, and share

Curated Newsletters

  • Insights on markets, finance, politics, tech, and more delivered to your inbox

Market Analysis & Investment Insights

  • In-depth market analysis & insights with access to The Smart Investor

Archives

  • Repository of articles and publications dating back to 1997

Ad-free Reading

  • Uninterrupted reading experience with no advertisements

Seamless Access Across All Devices

  • Access Business Standard across devices — mobile, tablet, or PC, via web or app

More From This Section

First Published: Nov 26 2016 | 4:48 PM IST

Next Story