Biodegradable battery that dissolves inside the body

Image
IANS Washington
Last Updated : Mar 25 2014 | 6:03 PM IST

This is about a device that can monitor tissues or deliver treatments inside the body before being reabsorbed after use.

A four-cell biodegradable, implantable battery is here that can help in the development of such biomedical devices.

The battery, developed by materials scientist John Rogers from University of Illinois and collaborators, uses anodes of magnesium foil and cathodes of iron, molybdenum or tungsten.

All these metals would slowly dissolve in the body and their ions are biocompatible in low concentrations.

"Once dissolved, the battery releases less than 9 milligrams of magnesium - roughly twice as much as a magnesium coronary artery stent that has been successfully tested in clinical trials, and a concentration that is unlikely to cause problems in the body," Rogers explained.

Almost all of the key building blocks are now available to produce self-powered, biodegradable implants, he said.

"This is a really major advance. Until recently, there has not been a lot of progress in this area," added Jeffrey Borenstein, a biomedical engineer at Draper Laboratory, a nonprofit research and development centre in Cambridge, Massachusetts.

The team hopes to improve the batteries' power per unit weight - known as power density - by patterning the surface of the magnesium foil to increase its surface area, which should enhance its reactivity.

The authors estimated that a tiny battery could realistically power a wireless implantable sensor for a day.

It has environmental applications too.

To help remediation efforts during an oil spill, environmental officials could drop hundreds of thousands of tiny wireless chemical sensors across the slick.

These would later simply dissolve in the ocean.

Space is less of a constraint in these applications: a stack of several cells, for instance, can produce up to 1.6 volts - enough to power a light-emitting diode or generate a radio signal.

These batteries could eventually yield implantable drug-delivery devices that are controlled by radio signals, said the report in the journal Advanced Materials2.

*Subscribe to Business Standard digital and get complimentary access to The New York Times

Smart Quarterly

₹900

3 Months

₹300/Month

SAVE 25%

Smart Essential

₹2,700

1 Year

₹225/Month

SAVE 46%
*Complimentary New York Times access for the 2nd year will be given after 12 months

Super Saver

₹3,900

2 Years

₹162/Month

Subscribe

Renews automatically, cancel anytime

Here’s what’s included in our digital subscription plans

Exclusive premium stories online

  • Over 30 premium stories daily, handpicked by our editors

Complimentary Access to The New York Times

  • News, Games, Cooking, Audio, Wirecutter & The Athletic

Business Standard Epaper

  • Digital replica of our daily newspaper — with options to read, save, and share

Curated Newsletters

  • Insights on markets, finance, politics, tech, and more delivered to your inbox

Market Analysis & Investment Insights

  • In-depth market analysis & insights with access to The Smart Investor

Archives

  • Repository of articles and publications dating back to 1997

Ad-free Reading

  • Uninterrupted reading experience with no advertisements

Seamless Access Across All Devices

  • Access Business Standard across devices — mobile, tablet, or PC, via web or app

More From This Section

First Published: Mar 25 2014 | 5:48 PM IST

Next Story