CRISPR gene editing method could treat muscular weakness

Image
IANS New York
Last Updated : Feb 07 2018 | 2:05 PM IST

Scientists have developed a CRISPR gene-editing technique that can potentially correct a majority of the 3,000 mutations that cause Duchenne muscular dystrophy (DMD), a genetic disorder characterised by progressive muscular weakness.

The method, detailed in the journal Science Advances, works by making a single cut at strategic points along the patient's DNA.

The method, successfully tested in heart muscle cells from patients, offers an efficient alternative to the daunting task of developing an individualised molecular treatment for each gene mutation that causes DMD.

It also opens up possible new treatment approaches for other diseases that have thus far required more intrusive methods to correct single-gene mutations.

"This is a significant step," said Eric Olson of University of Texas Southwestern Medical Center in the US.

"We're hopeful this technique will eventually alleviate pain and suffering, perhaps even save the lives, of DMD patients who have a wide range of mutations and, unfortunately, have had no other treatment options to eliminate the underlying cause of the disease," Olson said.

The new strategy can enhance the accuracy for surgical-like editing of the human genome, correcting mistakes in the DNA sequence that cause devastating diseases like DMD.

DMD is a rare disease affecting primarily boys and is caused by defects in the gene that makes the dystrophin protein. Normally, the dystrophin protein helps strengthen muscle fibers.

The new study demonstrated how a wide range of mutations can be corrected in human cells by eliminating abnormal splice sites in the genomic DNA.

These splice sites instruct the genetic machinery to build abnormal dystrophin molecules, but once the gene is successfully edited it expresses a much-improved dystrophin protein product, enhancing the function of the muscle tissue.

"In fact, we found that correcting less than half of the cardiomyocytes (heart muscle cells) was enough to rescue cardiac function to near-normal levels in human-engineered heart tissue," said Chengzu Long, lead author of the study and Assistant Professor of Medicine at New York University Langone Health.

--IANS

gb/vm

Disclaimer: No Business Standard Journalist was involved in creation of this content

*Subscribe to Business Standard digital and get complimentary access to The New York Times

Smart Quarterly

₹900

3 Months

₹300/Month

SAVE 25%

Smart Essential

₹2,700

1 Year

₹225/Month

SAVE 46%
*Complimentary New York Times access for the 2nd year will be given after 12 months

Super Saver

₹3,900

2 Years

₹162/Month

Subscribe

Renews automatically, cancel anytime

Here’s what’s included in our digital subscription plans

Exclusive premium stories online

  • Over 30 premium stories daily, handpicked by our editors

Complimentary Access to The New York Times

  • News, Games, Cooking, Audio, Wirecutter & The Athletic

Business Standard Epaper

  • Digital replica of our daily newspaper — with options to read, save, and share

Curated Newsletters

  • Insights on markets, finance, politics, tech, and more delivered to your inbox

Market Analysis & Investment Insights

  • In-depth market analysis & insights with access to The Smart Investor

Archives

  • Repository of articles and publications dating back to 1997

Ad-free Reading

  • Uninterrupted reading experience with no advertisements

Seamless Access Across All Devices

  • Access Business Standard across devices — mobile, tablet, or PC, via web or app

More From This Section

First Published: Feb 07 2018 | 2:02 PM IST

Next Story