How carbon from Mars escaped into atmosphere

Image
IANS Washington
Last Updated : Nov 25 2015 | 11:02 AM IST

A team of scientists has offered an explanation of the "missing" carbon on Red Planet, suggesting that it may have escaped into the atmosphere owing to the strong ultraviolet (UV) rays from the Sun.

They suggest that 3.8 billion years ago, Mars might have had a moderately dense atmosphere.

Such an atmosphere -- with a surface pressure equal to or less than that found on Earth -- could have evolved into the current thin one.

"Our paper shows that transitioning from a moderately dense atmosphere to the current thin one is entirely possible," says postdoctoral fellow Renyu Hu from California Institute of Technology (Caltech).

The solar wind stripped away much of Mars' ancient atmosphere and is still removing tons of it every day.

There are two possible mechanisms for the removal of the excess carbon dioxide.

Either the carbon dioxide was incorporated into minerals in rocks called carbonates or it was lost to space.

One way carbon dioxide escapes to space from Mars' atmosphere is called sputtering, which involves interactions between the solar wind and the upper atmosphere.

NASA's MAVEN (Mars Atmosphere and Volatile Evolution) mission has yielded recent results indicating that about about 100 grams of particles every second are stripped from today's Martian atmosphere via this process.

Sputtering slightly favours loss of carbon-12, compared to carbon-13, but this effect is small.

The Curiosity measurement shows that today's Martian atmosphere is far more enriched in carbon-13 -- in proportion to carbon-12 -- than it should be as a result of sputtering alone, so a different process must also be at work.

Hu and his co-authors identify a mechanism that could have significantly contributed to the carbon-13 enrichment.

The process begins with ultraviolet (UV) light from the Sun striking a molecule of carbon dioxide in the upper atmosphere, splitting it into carbon monoxide and oxygen.

Then, UV light hits the carbon monoxide and splits it into carbon and oxygen.

Some carbon atoms produced this way have enough energy to escape from the atmosphere, and the new study shows that carbon-12 is far more likely to escape than carbon-13.

There are three naturally occurring isotopes of carbon: 12, 13 and 14.

Modeling the long-term effects of this mechanism, the researchers found that a small amount of escape by this process leaves a large fingerprint in the carbon isotopic ratio.

That, in turn, allowed them to calculate that the atmosphere 3.8 billion years ago might have had a surface pressure a bit less thick than Earth's atmosphere today.

"This solves a long-standing paradox," added Bethany Ehlmann of Caltech and NASA's JPL in a paper published in the journal Nature Communications.

*Subscribe to Business Standard digital and get complimentary access to The New York Times

Smart Quarterly

₹900

3 Months

₹300/Month

SAVE 25%

Smart Essential

₹2,700

1 Year

₹225/Month

SAVE 46%
*Complimentary New York Times access for the 2nd year will be given after 12 months

Super Saver

₹3,900

2 Years

₹162/Month

Subscribe

Renews automatically, cancel anytime

Here’s what’s included in our digital subscription plans

Exclusive premium stories online

  • Over 30 premium stories daily, handpicked by our editors

Complimentary Access to The New York Times

  • News, Games, Cooking, Audio, Wirecutter & The Athletic

Business Standard Epaper

  • Digital replica of our daily newspaper — with options to read, save, and share

Curated Newsletters

  • Insights on markets, finance, politics, tech, and more delivered to your inbox

Market Analysis & Investment Insights

  • In-depth market analysis & insights with access to The Smart Investor

Archives

  • Repository of articles and publications dating back to 1997

Ad-free Reading

  • Uninterrupted reading experience with no advertisements

Seamless Access Across All Devices

  • Access Business Standard across devices — mobile, tablet, or PC, via web or app

More From This Section

First Published: Nov 25 2015 | 10:52 AM IST

Next Story