Mathematical model predicts dengue epidemic in urban areas

Image
IANS New York
Last Updated : Dec 25 2015 | 3:02 PM IST

A new mathematical model developed by three American scientists offers a simplified approach to studying the spread of dengue fever in urban areas by breaking down the epidemic dynamics across a city and its varying neighbourhoods and populations.

Authored by Lucas M. Stolerman, Daniel Coombs and Stefanella Boatto, the 'SIR-Network Model and its Application to Dengue Fever,' offers a useful insight into how varying neighborhood conditions affect the spread of the disease and ways to contain it.

"The SIR-Network model can be used to predict whether local interventions - like cleaning up standing water in containers - in one or two neighbourhoods could affect the prevalence of Dengue across the city," said study co-author Coombs.

"We give formulae that describe whether an epidemic is possible, in terms of human travel patterns among neighbourhoods, mosquito populations and biting rates in each neighbourhood," he added.

The model uses a Susceptible-Infected-Recovered (SIR) approach to disease spread and the network consists of the city's neighbourhoods where local populations are assumed to be well-mixed.

The authors applied the SIR-Network model to Dengue fever data, which had been updated several times, including as recent as 2014, from the epidemic outbreak of 2007-2008 in various neighbourhoods of Rio de Janeiro, Brazil, and soon discovered several interesting features of the epidemic.

First, they needed to include a transmission rate that varied over the months of the Dengue season to match the available data. The authors predict that the transmission rate peaks 6-8 weeks before the peak incidence of Dengue.

Secondly, they predict that the city centre, where large populations from various neighbourhoods go to work each day, is the most important neighbourhood to spreading the fever. Ultimately, the researchers found that results were improved most when a time-infection parameter was introduced to model seasonal climate changes.

"We feel that our results highlight the need for countermeasures before the peak of an epidemic, and also point to the importance of central neighbourhoods as hubs of Dengue transmission," said Boatto.

The study co-authors admit establishing a comprehensive picture of Dengue would be very challenging because there are so many varying pieces to the puzzle. For example, some of the factors to be considered include the impact of environmental variables on mosquito populations, changes in weather, human behaviour like mosquito avoidance or control and travel on the network.

The model was published recently in the Society for Industrial and Applied Mathematics (SIAM) Journal on Applied Mathematics.

*Subscribe to Business Standard digital and get complimentary access to The New York Times

Smart Quarterly

₹900

3 Months

₹300/Month

SAVE 25%

Smart Essential

₹2,700

1 Year

₹225/Month

SAVE 46%
*Complimentary New York Times access for the 2nd year will be given after 12 months

Super Saver

₹3,900

2 Years

₹162/Month

Subscribe

Renews automatically, cancel anytime

Here’s what’s included in our digital subscription plans

Exclusive premium stories online

  • Over 30 premium stories daily, handpicked by our editors

Complimentary Access to The New York Times

  • News, Games, Cooking, Audio, Wirecutter & The Athletic

Business Standard Epaper

  • Digital replica of our daily newspaper — with options to read, save, and share

Curated Newsletters

  • Insights on markets, finance, politics, tech, and more delivered to your inbox

Market Analysis & Investment Insights

  • In-depth market analysis & insights with access to The Smart Investor

Archives

  • Repository of articles and publications dating back to 1997

Ad-free Reading

  • Uninterrupted reading experience with no advertisements

Seamless Access Across All Devices

  • Access Business Standard across devices — mobile, tablet, or PC, via web or app

More From This Section

First Published: Dec 25 2015 | 2:50 PM IST

Next Story