Soon, trees to deliver high-power storage devices

Image
IANS Washington
Last Updated : Apr 08 2014 | 11:05 AM IST

In a major breakthrough, scientists have found a novel way to make high-tech energy storage devices from your neighbourhood tree.

Researchers at Oregon State University (OSU) found that cellulose - the most abundant organic polymer on earth and a key component of trees - can be heated in a furnace in the presence of ammonia and turned into the building blocks for supercapacitors.

These supercapacitors are extraordinary, high-power energy devices with a wide range of industrial applications - in everything from electronics to automobiles and aviation.

The new approach can produce nitrogen-doped, nanoporous carbon membranes - the electrodes of a supercapacitor - during a low cost environment-friendly process.

The only byproduct is methane which could be used immediately as a fuel or for other purposes.

"The ease, speed and potential of this process is really exciting," said Xiulei (David) Ji, an assistant professor of chemistry in the OSU College of Science.

"For the first time we have proven that you can react cellulose with ammonia and create these N-doped nanoporous carbon membranes," Ji added.

This research opens a whole new scientific area, studying reducing gas agents for carbon activation.

"We are going to take cheap wood and turn it into a valuable high-tech product," he noted.

These carbon membranes at the nano-scale are extraordinarily thin - a single gram of them can have a surface area of nearly 2,000 square metres.

That is part of what makes them useful in supercapacitors.

And the new process used to do this is a single-step reaction that is fast and inexpensive.

Supercapacitors can be used in computers and consumer electronics, such as the flash in a digital camera.

They have applications in heavy industry, and are able to power anything from a crane to a forklift.

A supercapacitor can capture energy that might otherwise be wasted, such as in braking operations.

"If we use this very fast, simple process to make these devices much less expensive, there could be huge benefits," Ji said in a study published in Nano Letters, a journal of the American Chemical Society.

*Subscribe to Business Standard digital and get complimentary access to The New York Times

Smart Quarterly

₹900

3 Months

₹300/Month

SAVE 25%

Smart Essential

₹2,700

1 Year

₹225/Month

SAVE 46%
*Complimentary New York Times access for the 2nd year will be given after 12 months

Super Saver

₹3,900

2 Years

₹162/Month

Subscribe

Renews automatically, cancel anytime

Here’s what’s included in our digital subscription plans

Exclusive premium stories online

  • Over 30 premium stories daily, handpicked by our editors

Complimentary Access to The New York Times

  • News, Games, Cooking, Audio, Wirecutter & The Athletic

Business Standard Epaper

  • Digital replica of our daily newspaper — with options to read, save, and share

Curated Newsletters

  • Insights on markets, finance, politics, tech, and more delivered to your inbox

Market Analysis & Investment Insights

  • In-depth market analysis & insights with access to The Smart Investor

Archives

  • Repository of articles and publications dating back to 1997

Ad-free Reading

  • Uninterrupted reading experience with no advertisements

Seamless Access Across All Devices

  • Access Business Standard across devices — mobile, tablet, or PC, via web or app

More From This Section

First Published: Apr 08 2014 | 11:00 AM IST

Next Story