3-D printed models of heart, arteries developed

Image
Press Trust of India Washington
Last Updated : Oct 25 2015 | 12:57 PM IST
Researchers have used a new inexpensive 3-D printing method to develop models of heart and arteries out of biological materials.
The advance could one day lead to a world in which transplants are no longer necessary to repair damaged organs, researchers said.
"We've been able to take MRI images of coronary arteries and 3-D images of embryonic hearts and 3-D bioprint them with unprecedented resolution and quality out of very soft materials like collagens, alginates and fibrins," said Adam Feinberg, an associate professor at Carnegie Mellon University.
"We should expect to see 3-D bioprinting continue to grow as an important tool for a large number of medical applications," said Jim Garrett, Dean of Carnegie Mellon's College of Engineering.
Traditional 3-D printers build hard objects typically made of plastic or metal, and they work by depositing material onto a surface layer-by-layer to create the 3-D object.
Printing each layer requires sturdy support from the layers below, so printing with soft materials like gels has been limited.
"The challenge with soft materials - think about something like Jello that we eat - is that they collapse under their own weight when 3-D printed in air," said Feinberg.
"So we developed a method of printing these soft materials inside a support bath material. Essentially, we print one gel inside of another gel, which allows us to accurately position the soft material as it's being printed, layer-by-layer," he said.
One of the major advances of this technique, termed FRESH, or "Freeform Reversible Embedding of Suspended Hydrogels," is that the support gel can be easily melted away and removed by heating to body temperature, which does not damage the delicate biological molecules or living cells that were bioprinted.
As a next step, the group is working towards incorporating real heart cells into these 3-D printed tissue structures, providing a scaffold to help form contractile muscle.
Bioprinting is a growing field, but to date, most 3-D bioprinters have cost over USD 100,000 and require specialised expertise to operate, limiting wider-spread adoption, researchers said.
Feinberg's group, however, has been able to implement their technique on a range of consumer-level 3-D printers, which cost less than USD 1,000 by utilising open-source hardware and software.
The study was published in the journal Science Advances.
*Subscribe to Business Standard digital and get complimentary access to The New York Times

Smart Quarterly

₹900

3 Months

₹300/Month

SAVE 25%

Smart Essential

₹2,700

1 Year

₹225/Month

SAVE 46%
*Complimentary New York Times access for the 2nd year will be given after 12 months

Super Saver

₹3,900

2 Years

₹162/Month

Subscribe

Renews automatically, cancel anytime

Here’s what’s included in our digital subscription plans

Exclusive premium stories online

  • Over 30 premium stories daily, handpicked by our editors

Complimentary Access to The New York Times

  • News, Games, Cooking, Audio, Wirecutter & The Athletic

Business Standard Epaper

  • Digital replica of our daily newspaper — with options to read, save, and share

Curated Newsletters

  • Insights on markets, finance, politics, tech, and more delivered to your inbox

Market Analysis & Investment Insights

  • In-depth market analysis & insights with access to The Smart Investor

Archives

  • Repository of articles and publications dating back to 1997

Ad-free Reading

  • Uninterrupted reading experience with no advertisements

Seamless Access Across All Devices

  • Access Business Standard across devices — mobile, tablet, or PC, via web or app

More From This Section

First Published: Oct 25 2015 | 12:57 PM IST

Next Story