'3D printed' human skin pigmentation created

Image
Press Trust of India Singapore
Last Updated : Jan 24 2018 | 2:41 PM IST
Scientists have developed a new method for controlling pigmentation in fabricated human skin using 3D bio-printing.
The method developed by researchers at Nanyang Technological University in Singapore has the potential to produce pigment-correct skin grafts.
It could also be used to develop skin constructs for toxicology testing and fundamental cell biology research.
The team controlled the distribution of melanin-producing skin cells (melanocytes) on a biomimetic tissue substrate, to produce human-like skin pigmentation.
While current engineered skin constructs are successfully used in skin repair and grafting, toxicology, and chemical testing, they lack complex features such as skin pigmentation, sweat glands or hair follicles.
"3D bio-printing is an excellent platform for the precise deposition of biomaterials and living cells to make biomimetic skin, in large volumes with great repeatability," said Wei Long Ng from Nanyang Technological University.
However, non-uniform skin pigmentation is often seen, and this remains a huge challenge to be solved.
"Our aim with this project was to use this method to demonstrate the feasibility of making 3D in-vitro pigmented human skin constructs, with uniform skin pigmentation," said Wei Long, lead author of the study published in the journal Biofabrication.
To make the pigmented skin constructs, the team used three different types of skin cells - keratinocytes, melanocytes, and fibroblasts - and a two-step 'drop on demand' bio-printing method.
"The two-step bio-printing strategy involves the fabrication of hierarchical porous collagen-based structures (that closely resembles the skin's dermal region)," said Wei Long.
"When we compared the 3D bio-printed skin constructs to those made using a manual-casting method, we found two distinct differences between the two fabrication approaches - the cell distribution on top of the dermal regions, and the microstructures within the dermal regions.
"The two-step bio-printing strategy enables the standardised distribution of printed cells in a highly- controlled way, as compared to the manual casting approach," Wei Long said.
The bio-printing technique allows the manipulation of pore sizes within the 3D collagen-fibroblast matrices, to fabricate hierarchical porous structures that are clearly seen in the native skin tissues, researchers said.
In contrast, tuning the skin microstructure within the 3D collagen-fibroblast matrices using the manual-casting approach is extremely challenging, they said.

Disclaimer: No Business Standard Journalist was involved in creation of this content

*Subscribe to Business Standard digital and get complimentary access to The New York Times

Smart Quarterly

₹900

3 Months

₹300/Month

SAVE 25%

Smart Essential

₹2,700

1 Year

₹225/Month

SAVE 46%
*Complimentary New York Times access for the 2nd year will be given after 12 months

Super Saver

₹3,900

2 Years

₹162/Month

Subscribe

Renews automatically, cancel anytime

Here’s what’s included in our digital subscription plans

Exclusive premium stories online

  • Over 30 premium stories daily, handpicked by our editors

Complimentary Access to The New York Times

  • News, Games, Cooking, Audio, Wirecutter & The Athletic

Business Standard Epaper

  • Digital replica of our daily newspaper — with options to read, save, and share

Curated Newsletters

  • Insights on markets, finance, politics, tech, and more delivered to your inbox

Market Analysis & Investment Insights

  • In-depth market analysis & insights with access to The Smart Investor

Archives

  • Repository of articles and publications dating back to 1997

Ad-free Reading

  • Uninterrupted reading experience with no advertisements

Seamless Access Across All Devices

  • Access Business Standard across devices — mobile, tablet, or PC, via web or app

More From This Section

First Published: Jan 24 2018 | 2:41 PM IST

Next Story