Scientists claim to have successfully reversed the desire to drink in alcohol-dependent rats, paving the way for future therapies to treat alcoholism in humans.
The team was able to use lasers to temporarily inactivate a specific neuronal population, reversing alcohol-seeking behaviour and even reducing the physical symptoms of withdrawal.
"This discovery is exciting -- it means we have another piece of the puzzle to explain the neural mechanism driving alcohol consumption," said Olivier George, an associate professor at Scripps Research Institute in the US.
Although the laser treatment is far from ready for human use, George believes identifying these neurons opens the door to developing drug therapies or even gene therapies for alcohol addiction.
"We need compounds that are specific to this neuronal circuitry," said George, senior author of the study published in the journal Nature Communications.
Previous research at Scripps Research has shown that transitioning from casual drinking to dependent drinking occurs alongside fundamental changes in how the brain sends signals.
These signals drive the intense cravings that make it so difficult for many people to scale back their alcohol consumption.
Researchers have been hunting for the brain cells that driving drinking in an alcohol-addicted rat model.
They found a neuronal "ensemble," or group of connected cells in a brain region called the central nucleus of the amygdala (CeA).
For the study, they tested the role of a subset of neurons in the ensemble, called corticotropin-releasing factor (CRF) neurons.
The laboratory had found that these CRF neurons make up 80 percent of the ensemble.
Rats used in this study were surgically implanted with optic fibers aimed to shine light on the CRF neurons -- to inactivate them at the flip of a switch.
The scientists spent several months to establish alcohol dependence in the mice. The CeA neuronal ensemble was active in these rats, compelling them to drink more.
The scientists then flipped on the lasers to inactivate the CRF neurons -- and the results were dramatic.
The rats immediately returned to their pre-dependent drinking levels, the team found.
Inactivating these neurons also reduced the physical symptoms of withdrawal, such as abnormal gait and shaking, researchers said.
The effect was even reversible. Turning off the lasers caused the rats to resume their dependent behaviour.
George said the next step in translating this work to humans is to find a way to selectively inhibit only these specific CRF neurons, perhaps using a novel or repurposed compound identified using high-throughput screening of large libraries of compounds.
Disclaimer: No Business Standard Journalist was involved in creation of this content
You’ve reached your limit of {{free_limit}} free articles this month.
Subscribe now for unlimited access.
Already subscribed? Log in
Subscribe to read the full story →
Smart Quarterly
₹900
3 Months
₹300/Month
Smart Essential
₹2,700
1 Year
₹225/Month
Super Saver
₹3,900
2 Years
₹162/Month
Renews automatically, cancel anytime
Here’s what’s included in our digital subscription plans
Exclusive premium stories online
Over 30 premium stories daily, handpicked by our editors


Complimentary Access to The New York Times
News, Games, Cooking, Audio, Wirecutter & The Athletic
Business Standard Epaper
Digital replica of our daily newspaper — with options to read, save, and share


Curated Newsletters
Insights on markets, finance, politics, tech, and more delivered to your inbox
Market Analysis & Investment Insights
In-depth market analysis & insights with access to The Smart Investor


Archives
Repository of articles and publications dating back to 1997
Ad-free Reading
Uninterrupted reading experience with no advertisements


Seamless Access Across All Devices
Access Business Standard across devices — mobile, tablet, or PC, via web or app
