The findings may help researchers around the world understand the causes of neurodevelopmental disorders such as autism, intellectual disability and schizophrenia.
"It's critically important to be able to look at questions of brain development in real human tissue when you're trying to study human disease," said Arnold Kriegstein, a professor at University of California, San Francisco (UCSF) in the US.
"Many of the insights we're able to gain with this data can't be seen in the mouse," said Kriegstein.
Researchers had previously developed techniques for analysing distinctive patterns of DNA activity in individual cells extracted from human brain tissue.
The approach enabled a wide range of studies of human brain development, including implicating a new class of neural stem cell recently discovered by the lab in the evolutionary expansion of the human brain and identifying how the mosquito-borne Zika virus may contribute to microcephaly in infants infected in utero.
They have begun to build a comprehensive, open-source atlas of gene expression across the developing brain, which they hope will serve as a resource for other scientists.
"This is an attempt to generate an unbiased view of what genes are expressed in every cell type in the developing human brain in order to highlight potential cellular vulnerabilities in patient-relevant mutations," said Tomasz Nowakowski, an assistant professor at UCSF.
"Identifying gene variants that are general risk factors for neurological and psychiatric disease is important, but understanding exactly which cell types in the developing brain are compromised and what the consequences are is still extremely challenging," said Alex Pollen, an assistant professor at UCSF.
The study, published in the journal Science, analysed gene expression in single cells across key developmental time points and from different regions of the brain.
Bhaduri then used statistical algorithms to cluster different cells based on their patterns of gene expression.
This analysis allowed the team to trace the genetic signals driving brain development at a much finer level, both regionally and over time, than had previously been possible.
For example, the researchers were able to identify previously unknown gene expression differences between the neural stem cells that give rise to the brain's deep structures versus its neocortical surface, and to show that molecular signatures of different neural cell types arise much earlier in brain development than previously realised.
Disclaimer: No Business Standard Journalist was involved in creation of this content
You’ve reached your limit of {{free_limit}} free articles this month.
Subscribe now for unlimited access.
Already subscribed? Log in
Subscribe to read the full story →
Smart Quarterly
₹900
3 Months
₹300/Month
Smart Essential
₹2,700
1 Year
₹225/Month
Super Saver
₹3,900
2 Years
₹162/Month
Renews automatically, cancel anytime
Here’s what’s included in our digital subscription plans
Exclusive premium stories online
Over 30 premium stories daily, handpicked by our editors


Complimentary Access to The New York Times
News, Games, Cooking, Audio, Wirecutter & The Athletic
Business Standard Epaper
Digital replica of our daily newspaper — with options to read, save, and share


Curated Newsletters
Insights on markets, finance, politics, tech, and more delivered to your inbox
Market Analysis & Investment Insights
In-depth market analysis & insights with access to The Smart Investor


Archives
Repository of articles and publications dating back to 1997
Ad-free Reading
Uninterrupted reading experience with no advertisements


Seamless Access Across All Devices
Access Business Standard across devices — mobile, tablet, or PC, via web or app
