Bird brains more precise than humans: study

Image
Press Trust of India Melbourne
Last Updated : Sep 21 2014 | 5:45 PM IST
Scientists have found that birds show superior judgement of their body width compared to humans, a finding that can help design autonomous aircraft navigation systems.
A University of Queensland (UQ) study has found that budgerigars can fly between gaps almost as narrow as their outstretched wingspan rather than taking evasive measures such as tucking in their wings.
Queensland Brain Institute researcher Dr Ingo Schiffner said previous research showed humans unnecessarily turned their shoulders to pass through doorways narrower than 130 per cent of their body width, whereas birds are far more precise.
"We were quite surprised by the birds' accuracy - they can judge their wingspan within 106 per cent of their width when it comes to flying through gaps," Schiffner said.
"When you think about the cluttered environments they fly through, such as forests, they need to develop this level of accuracy.
"When they encounter a narrow gap, they either lift their wings up vertically or tuck them in completely, minimising their width to that of their torso," Schiffner said.
The researchers wanted to know precisely how birds judge gaps between obstacles before engaging in evasive manoeuvres.
In testing, budgies flew down corridors with variable widths between obstacles, and their flights were recorded with high-speed cameras for analysis.
Schiffner said the research would be applied to robotics work at the Queensland Brain Institute's Neuroscience of Vision and Aerial Robotics laboratory.
"If we can understand how birds avoid obstacles, we might be able to develop algorithms for aircraft to avoid obstacles as well," he said.
"For instance, urban drones used for deliveries would need to fly through complex environments such as tight alleyways or between trees at the front of homes.
"For us, it isn't the ability to tuck in wings that is of interest if we are talking about fixed-wing or rotor aircraft, but whether we can replicate what happens neurologically in birds as they navigate," Schiffner said.
The study is published in the journal Frontiers in Zoology.
*Subscribe to Business Standard digital and get complimentary access to The New York Times

Smart Quarterly

₹900

3 Months

₹300/Month

SAVE 25%

Smart Essential

₹2,700

1 Year

₹225/Month

SAVE 46%
*Complimentary New York Times access for the 2nd year will be given after 12 months

Super Saver

₹3,900

2 Years

₹162/Month

Subscribe

Renews automatically, cancel anytime

Here’s what’s included in our digital subscription plans

Exclusive premium stories online

  • Over 30 premium stories daily, handpicked by our editors

Complimentary Access to The New York Times

  • News, Games, Cooking, Audio, Wirecutter & The Athletic

Business Standard Epaper

  • Digital replica of our daily newspaper — with options to read, save, and share

Curated Newsletters

  • Insights on markets, finance, politics, tech, and more delivered to your inbox

Market Analysis & Investment Insights

  • In-depth market analysis & insights with access to The Smart Investor

Archives

  • Repository of articles and publications dating back to 1997

Ad-free Reading

  • Uninterrupted reading experience with no advertisements

Seamless Access Across All Devices

  • Access Business Standard across devices — mobile, tablet, or PC, via web or app

More From This Section

First Published: Sep 21 2014 | 5:45 PM IST

Next Story