Boron may be next wonder material?

Image
Press Trust of India Washington
Last Updated : Jan 30 2017 | 11:48 AM IST
Move over graphene! Boron may become the nanomaterial of the century as scientists have found that two-atom-wide ribbons and single-atom chains of the element possess unique properties.
For example, if metallic ribbons of boron are stretched, they morph into antiferromagnetic semiconducting chains, and when released they fold back into ribbons.
Experimental labs are making progress in synthesising atom-thin and fullerene-type boron, which led Boris Yakobson, researcher at Rice University in the US to think 1-D boron may eventually become real as well.
Yakobson's lab creates atom-level computer simulations of materials that do not necessarily exist yet.
Simulating and testing their energetic properties helps guide experimentalists working to create real-world materials.
Carbon-atom chains known as carbyne, boron fullerenes and two-dimensional films called borophene, all predicted by the Rice group, have since been created by labs.
"Our work on carbyne and with planar boron got us thinking that a one-dimensional chain of boron atoms is also a possible and intriguing structure," said Yakobson.
One-dimensional boron forms two well-defined phases - chains and ribbons - which are linked by a "reversible phase transition," meaning they can turn from one form to the other and back.
To demonstrate these interesting chemomechanics, the researchers used a computer to "pull" the ends of a simulated boron ribbon with 64 atoms.
This forced the atoms to rearrange into a single carbyne-like chain. In the simulation, researchers left a fragment of the ribbon to serve as a seed, and when they released the tension, the atoms from the chain neatly returned to ribbon form.
"Boron is very different from carbon. It prefers to form a double row of atoms, like a truss used in bridge construction. This appears to be the most stable, lowest-energy state," Yakobson said.
"If you pull on it, it starts unfolding; the atoms yield to this monatomic thread. And if you release the force, it folds back," he said.
"That makes it an interesting combination: When you stretch it halfway, you may have a portion of ribbon and a portion of chain," he said.
"Because one of them is metal and the other is a semiconductor, this becomes a one-dimensional, adjustable Schottky junction," he added.
A Schottky junction is a barrier to electrons at a metal-semiconductor junction and is commonly used in diodes that allow current to flow in only one direction.
The study appears in the Journal of the American Chemical Society.

Disclaimer: No Business Standard Journalist was involved in creation of this content

*Subscribe to Business Standard digital and get complimentary access to The New York Times

Smart Quarterly

₹900

3 Months

₹300/Month

SAVE 25%

Smart Essential

₹2,700

1 Year

₹225/Month

SAVE 46%
*Complimentary New York Times access for the 2nd year will be given after 12 months

Super Saver

₹3,900

2 Years

₹162/Month

Subscribe

Renews automatically, cancel anytime

Here’s what’s included in our digital subscription plans

Exclusive premium stories online

  • Over 30 premium stories daily, handpicked by our editors

Complimentary Access to The New York Times

  • News, Games, Cooking, Audio, Wirecutter & The Athletic

Business Standard Epaper

  • Digital replica of our daily newspaper — with options to read, save, and share

Curated Newsletters

  • Insights on markets, finance, politics, tech, and more delivered to your inbox

Market Analysis & Investment Insights

  • In-depth market analysis & insights with access to The Smart Investor

Archives

  • Repository of articles and publications dating back to 1997

Ad-free Reading

  • Uninterrupted reading experience with no advertisements

Seamless Access Across All Devices

  • Access Business Standard across devices — mobile, tablet, or PC, via web or app

More From This Section

First Published: Jan 30 2017 | 11:48 AM IST

Next Story