Using the Atacama Large Millimeter/submillimeter Array (ALMA) telescope in Chile, researchers detected faint molecular fingerprint of methyl chloride - a chemical commonly produced by industrial and biological processes here on Earth - around an infant star system known as IRAS 16293-2422.
Traces of this organic compound were also discovered in the thin atmosphere of comet 67P/Churyumov-Gerasimenko (67P/C-G) by the Rosetta space probe.
Methyl chloride (CH3Cl), also known as Freon-40, is one of a class of molecules known as organohalogens. This new ALMA observation is the first detection ever of a stable organohalogen in interstellar space.
The recent ALMA and Rosetta detections raise doubts about that proposal, however. They indicate that methyl chloride forms naturally in interstellar clouds and endures long enough to become part of a forming solar system.
IRAS 16293-2422 is a collection of several infant stars, or protostars, each about the same mass as our Sun. It is located about 400 light-years from Earth and is still surrounded by its natal cocoon of dust and gas.
"We simply didn't predict its formation and were surprised to find it in such significant concentrations," said Fayolle.
"It's clear now that these molecules form readily in stellar nurseries, providing insights into the chemical evolution of solar systems, including our own," she said.
"ALMA's discovery of organohalogens in the interstellar medium also tells us something about the starting conditions for organic chemistry on planets," said Karin Oberg, an astrochemist at CfA.
"Such chemistry is an important step toward the origins of life," said Oberg, co-author of the study.
The researchers also note that abundant organohalogens around a young Sun-like analogue demonstrates that the organic chemistry present in the interstellar medium involves halogens, which was previously not known.
In addition, both ALMA and Rosetta detected this molecule in similar abundance ratios. Since comets are a remnant of the formation of our solar system and retain a chemical fingerprint of that era, the new observations support the idea that a young solar system can inherit the chemical make-up of its parent star-forming cloud.
Disclaimer: No Business Standard Journalist was involved in creation of this content
You’ve reached your limit of {{free_limit}} free articles this month.
Subscribe now for unlimited access.
Already subscribed? Log in
Subscribe to read the full story →
Smart Quarterly
₹900
3 Months
₹300/Month
Smart Essential
₹2,700
1 Year
₹225/Month
Super Saver
₹3,900
2 Years
₹162/Month
Renews automatically, cancel anytime
Here’s what’s included in our digital subscription plans
Exclusive premium stories online
Over 30 premium stories daily, handpicked by our editors


Complimentary Access to The New York Times
News, Games, Cooking, Audio, Wirecutter & The Athletic
Business Standard Epaper
Digital replica of our daily newspaper — with options to read, save, and share


Curated Newsletters
Insights on markets, finance, politics, tech, and more delivered to your inbox
Market Analysis & Investment Insights
In-depth market analysis & insights with access to The Smart Investor


Archives
Repository of articles and publications dating back to 1997
Ad-free Reading
Uninterrupted reading experience with no advertisements


Seamless Access Across All Devices
Access Business Standard across devices — mobile, tablet, or PC, via web or app
