Computers may spot deadly food poisoning bacteria: study

Image
Press Trust of India London
Last Updated : Sep 22 2016 | 4:07 PM IST
A novel computer software can learn to predict strains of bacteria likely to cause food poisoning outbreaks, a new study has found.
Researchers at the University of Edinburgh in the UK used a software that compares genetic information from bacterial samples isolated from both animals and people.
The software learns the DNA signatures that are associated with E coli samples that have caused outbreaks of infection in people.
It can then pick out the animal strains that have these signatures, which are therefore likely to be a threat to human health.
Most E coli strains live in the guts of people and animals without causing illness but E coli O157 is linked with more serious human infections.
Cows also carry E coli O157 and serve as the main reservoir for these toxic bacteria. The animals excrete the bacteria in their faeces but do not become ill.
This makes it difficult to spot which herds and animals are carrying strains that are likely to cause disease in people.
The team trained the software on DNA sequences from strains isolated from cattle herds and human infections in the UK and the US.
Once trained, the computer is able to predict whether an E coli strain is likely to have come from a cow or a person.
Using this approach, the team predicts that less than 10 per cent of the E coli O157 cattle strains are likely to have the potential to cause human disease.
Interventions to stop the spread of the disease - such as vaccines - could be targeted at herds with these strains to minimise the risk of outbreaks in people, researchers said.
E coli O157 causes stomach cramps, vomiting and severe diarrhoea in infected people. A recent outbreak of the illness in Scotland resulted in the death of a child and a further 19 cases of serious food poisoning.
The infection is believed to have originated from an unpasteurised cheese source.
Researchers said their approach could be adapted to test samples of other types of bacteria isolated from animals - such as salmonella and campylobacter - to identify strains with the potential to cause human disease.
"Our findings indicate that the most dangerous E coli O157 strains may in fact be very rare in the cattle reservoir, which is reassuring," said Professor David Gally, from University of Edinburgh.
"The study highlights the potential of machine learning approaches for identifying these strains early and prevent outbreaks of this infectious disease," Gally said.
"We hope that by investigating the genes the software uses to discriminate the strains, we can learn why certain isolates are more of a threat to human health," he said.
The study was published in the journal PNAS.

Disclaimer: No Business Standard Journalist was involved in creation of this content

*Subscribe to Business Standard digital and get complimentary access to The New York Times

Smart Quarterly

₹900

3 Months

₹300/Month

SAVE 25%

Smart Essential

₹2,700

1 Year

₹225/Month

SAVE 46%
*Complimentary New York Times access for the 2nd year will be given after 12 months

Super Saver

₹3,900

2 Years

₹162/Month

Subscribe

Renews automatically, cancel anytime

Here’s what’s included in our digital subscription plans

Exclusive premium stories online

  • Over 30 premium stories daily, handpicked by our editors

Complimentary Access to The New York Times

  • News, Games, Cooking, Audio, Wirecutter & The Athletic

Business Standard Epaper

  • Digital replica of our daily newspaper — with options to read, save, and share

Curated Newsletters

  • Insights on markets, finance, politics, tech, and more delivered to your inbox

Market Analysis & Investment Insights

  • In-depth market analysis & insights with access to The Smart Investor

Archives

  • Repository of articles and publications dating back to 1997

Ad-free Reading

  • Uninterrupted reading experience with no advertisements

Seamless Access Across All Devices

  • Access Business Standard across devices — mobile, tablet, or PC, via web or app

More From This Section

First Published: Sep 22 2016 | 4:07 PM IST

Next Story