Earth's crust 4.4 billion years old

Image
Press Trust of India Washington
Last Updated : Feb 24 2014 | 3:22 PM IST
Earth's crust first formed at least 4.4 billion years ago, just 160 million years after the formation of our solar system, a new study has found.
A time-line of the history of our planet places the formation of the Jack Hills zircon and a "cool early Earth" at 4.4 billion years, researchers said.
With the help of a tiny fragment of zircon extracted from a remote rock outcrop in Australia, the picture of how our planet became habitable to life is coming into sharper focus.
An international team of researchers led by University of Wisconsin-Madison geoscience Professor John Valley reveals data that confirm the Earth's crust first formed at least 4.4 billion years ago, just 160 million years after the formation of our solar system.
The work shows that the time when our planet was a fiery ball covered in a magma ocean came earlier.
"This confirms our view of how the Earth cooled and became habitable. This may also help us understand how other habitable planets would form," said Valley.
The study confirms that zircon crystals from Western Australia's Jack Hills region crystallised 4.4 billion years ago, building on earlier studies that used lead isotopes to date the Australian zircons and identify them as the oldest bits of the Earth's crust.
The microscopic zircon crystal used by Valley and his group is now confirmed to be the oldest known material of any kind formed on Earth.
The study, according to Valley, strengthens the theory of a "cool early Earth," where temperatures were low enough for liquid water, oceans and a hydrosphere not long after the planet's crust congealed from a sea of molten rock.
"The study reinforces our conclusion that Earth had a hydrosphere before 4.3 billion years ago," and possibly life not long after, said Valley.
The study was conducted using a new technique called atom-probe tomography that, in conjunction with secondary ion mass spectrometry, permitted scientists to accurately establish the age and thermal history of the zircon by determining mass of individual atoms of lead in the sample.
The clusters of lead atoms formed 1 billion years after crystallisation of the zircon, by which time the radioactive decay of uranium had formed the lead atoms that then diffused into clusters during reheating.
"The zircon formed 4.4 billion years ago, and at 3.4 billion years, all the lead that existed at that time was concentrated in these hotspots," Valley said.
The study was published in the journal Nature Geoscience.
*Subscribe to Business Standard digital and get complimentary access to The New York Times

Smart Quarterly

₹900

3 Months

₹300/Month

SAVE 25%

Smart Essential

₹2,700

1 Year

₹225/Month

SAVE 46%
*Complimentary New York Times access for the 2nd year will be given after 12 months

Super Saver

₹3,900

2 Years

₹162/Month

Subscribe

Renews automatically, cancel anytime

Here’s what’s included in our digital subscription plans

Exclusive premium stories online

  • Over 30 premium stories daily, handpicked by our editors

Complimentary Access to The New York Times

  • News, Games, Cooking, Audio, Wirecutter & The Athletic

Business Standard Epaper

  • Digital replica of our daily newspaper — with options to read, save, and share

Curated Newsletters

  • Insights on markets, finance, politics, tech, and more delivered to your inbox

Market Analysis & Investment Insights

  • In-depth market analysis & insights with access to The Smart Investor

Archives

  • Repository of articles and publications dating back to 1997

Ad-free Reading

  • Uninterrupted reading experience with no advertisements

Seamless Access Across All Devices

  • Access Business Standard across devices — mobile, tablet, or PC, via web or app

More From This Section

First Published: Feb 24 2014 | 3:22 PM IST

Next Story