Effects of high-risk Parkinson's mutation are reversible

Image
Press Trust of India London
Last Updated : Oct 16 2014 | 4:36 PM IST
Researchers have found a new way to target and reverse the effects caused by one of the most common genetic causes of Parkinson's disease.
Mutations in a gene called LRRK2 carry a well-established risk for Parkinson's disease, however the basis for this link is unclear.
Scientists from the University of Sheffield found that certain drugs could fully restore movement problems observed in fruit flies carrying the LRRK2 Roc-COR Parkinson's mutation.
These drugs, deacetylase inhibitors, target the transport system and reverse the defects caused by the faulty LRRK2 within nerve cells.
"Our study provides compelling evidence that there is a direct link between defective transport within nerve cells and movement problems caused by the LRRK2 Parkinson's mutation in flies," said Dr Kurt De Vos from the Department of Neuroscience.
"We could also show that these neuronal transport defects caused by the LRRK2 mutation are reversible," added co-investigator Dr Alex Whitworth from the Department of Biomedical Sciences.
"By targeting the transport system with drugs, we could not only prevent movement problems, but also fully restore movement abilities in fruit flies who already showed impaired movement marked by a significant decrease in both climbing and flight ability," he said.
The LRRK2 gene produces a protein that affects many processes in the cell. It is known to bind to the microtubules, the cells' transport tracks. A defect in this transport system has been suggested to contribute to Parkinson's disease.
The researchers have investigated this link and have now found the evidence that certain LRRK2 mutations affect transport in nerve cells which leads to movement problems observed in the fruit fly (Drosophila).
The team used several approaches to show that preventing the association of the mutant LRRK2 protein with the microtubule transport system rescues the transport defects in nerve cells, as well as the movement deficits in fruit flies.
"We successfully used drugs called deacetylase inhibitors to increase the acetylated form of alpha-tubulin within microtubules which does not associate with the mutant LRRK2 protein," De Vos added.
"We found that increasing microtubule acetylation had a direct impact on cellular axonal transport.
"These are very promising results which point to a potential Parkinson's therapy. However, further studies are needed to confirm that this rescue effect also applies in humans," De Vos said.
The study is published in the journal Nature Communications.
*Subscribe to Business Standard digital and get complimentary access to The New York Times

Smart Quarterly

₹900

3 Months

₹300/Month

SAVE 25%

Smart Essential

₹2,700

1 Year

₹225/Month

SAVE 46%
*Complimentary New York Times access for the 2nd year will be given after 12 months

Super Saver

₹3,900

2 Years

₹162/Month

Subscribe

Renews automatically, cancel anytime

Here’s what’s included in our digital subscription plans

Exclusive premium stories online

  • Over 30 premium stories daily, handpicked by our editors

Complimentary Access to The New York Times

  • News, Games, Cooking, Audio, Wirecutter & The Athletic

Business Standard Epaper

  • Digital replica of our daily newspaper — with options to read, save, and share

Curated Newsletters

  • Insights on markets, finance, politics, tech, and more delivered to your inbox

Market Analysis & Investment Insights

  • In-depth market analysis & insights with access to The Smart Investor

Archives

  • Repository of articles and publications dating back to 1997

Ad-free Reading

  • Uninterrupted reading experience with no advertisements

Seamless Access Across All Devices

  • Access Business Standard across devices — mobile, tablet, or PC, via web or app

More From This Section

First Published: Oct 16 2014 | 4:36 PM IST

Next Story