Electronic zippers control DNA strands

Image
Press Trust of India London
Last Updated : Apr 20 2013 | 12:05 PM IST
Scientists have invented a new way to zip and unzip DNA strands using electrochemistry.
The binding and unbinding mechanism of Deoxyribonucleic acid (DNA) strands is vital to natural biological processes and to the polymerase chain reactions used in biotechnology to copy DNA for sequencing and cloning.
The improved understanding of this process, and the discovery of new ways to control it, would accelerate the development of new technologies such as biosensors and DNA microarrays that could make medical diagnostics cheaper, faster and simpler to use.
The most common way of controlling the binding of DNA is by raising and lowering temperature in a process known as heat cycling. While this method is effective, it requires bulky equipment, which is often only suitable for use in laboratories.
The development of alternative methods to control the DNA binding process, for example with changes in acidity or the use of chemical agents, would be a significant step towards lab-on-a-chip devices that can rapidly detect disease.
However, until now, no method has been shown to enable fast, electrochemical control at constant temperatures without the need for dramatic changes in solution conditions or modifying the nucleotides, the building blocks of DNA.
A research team from the National Physical Laboratory and the University of Edinburgh in UK used a class of molecules called DNA intercalators which bind differently to DNA, depending on whether they are in a reduced or oxidised state, altering its stability.
These molecules are also electroactive, meaning that their chemical state can be controlled with an electric current.
Electrodes apply a voltage across a sample containing double strands of DNA which are bonded to the electroactive chemicals. This reduces the chemicals (they gain electrons), decreasing the stability of the DNA and unzipping the double helix into single strands.
Removing the voltage leads to the oxidisation of the chemicals and the DNA strands zip back up to re-form the familiar double helix structure. Put simply, with the flick of a switch, the oxidation state of the molecules can be changed and the DNA strands are zipped together or pulled apart.
The details of the process were published in the Journal of the American Chemical Society.
*Subscribe to Business Standard digital and get complimentary access to The New York Times

Smart Quarterly

₹900

3 Months

₹300/Month

SAVE 25%

Smart Essential

₹2,700

1 Year

₹225/Month

SAVE 46%
*Complimentary New York Times access for the 2nd year will be given after 12 months

Super Saver

₹3,900

2 Years

₹162/Month

Subscribe

Renews automatically, cancel anytime

Here’s what’s included in our digital subscription plans

Exclusive premium stories online

  • Over 30 premium stories daily, handpicked by our editors

Complimentary Access to The New York Times

  • News, Games, Cooking, Audio, Wirecutter & The Athletic

Business Standard Epaper

  • Digital replica of our daily newspaper — with options to read, save, and share

Curated Newsletters

  • Insights on markets, finance, politics, tech, and more delivered to your inbox

Market Analysis & Investment Insights

  • In-depth market analysis & insights with access to The Smart Investor

Archives

  • Repository of articles and publications dating back to 1997

Ad-free Reading

  • Uninterrupted reading experience with no advertisements

Seamless Access Across All Devices

  • Access Business Standard across devices — mobile, tablet, or PC, via web or app

More From This Section

First Published: Apr 20 2013 | 12:05 PM IST

Next Story