Elusive signals from early Universe found

Image
Press Trust of India London
Last Updated : Oct 02 2013 | 5:05 PM IST
Astronomers have made the first detection of a subtle twist in the relic radiation from the Big Bang, paving the way towards revealing the first moments of the Universe's existence.
The elusive signal was found in the way the first light in the Universe has been deflected during its journey to Earth by intervening galaxy clusters and dark matter, an invisible substance that is detected only indirectly through its gravitational influence.
The discovery using a telescope in Antarctica and ESA's Herschel space observatory, points the way towards finding evidence for gravitational waves born during the Universe's rapid 'inflation' phase.
The relic radiation from the Big Bang - the Cosmic Microwave Background, or CMB - was imprinted on the sky when the Universe was just 380,000 years old.
Today, some 13.8 billion years later, we see it as a sky filled with radio waves at a temperature of just 2.7 degrees above absolute zero.
Tiny variations in this temperature - around a few tens of millionths of a degree - reveal density fluctuations in the early Universe corresponding to the seeds of galaxies and stars we see today.
But the CMB also contains a wealth of other information. A small fraction of the light is polarised, like the light we can see using polarised glasses. This polarised light has two distinct patterns: E-modes and B-modes.
E-modes were first found in 2002 with a ground-based telescope. B-modes, however, are potentially much more exciting to cosmologists, although much harder to detect.
They can arise in two ways. The first involves adding a twist to the light as it crosses the Universe and is deflected by galaxies and dark matter - a phenomenon known as gravitational lensing.
The second has its roots buried deep in the mechanics of a very rapid phase of enormous expansion of the Universe, which cosmologists believe happened just a tiny fraction of a second after the Big Bang - 'inflation'.
The new study has combined data from the South Pole Telescope and Herschel to make the first detection of B-mode polarisation in the CMB due to gravitational lensing.
"This measurement was made possible by a clever and unique combination of ground-based observations from the South Pole Telescope - which measured the light from the Big Bang - with space-based observations from Herschel, which is sensitive to the galaxies that trace the dark matter which caused the gravitational lensing," said Joaquin Vieira, of the California Institute of Technology and the University of Illinois at Urbana-Champaign.
*Subscribe to Business Standard digital and get complimentary access to The New York Times

Smart Quarterly

₹900

3 Months

₹300/Month

SAVE 25%

Smart Essential

₹2,700

1 Year

₹225/Month

SAVE 46%
*Complimentary New York Times access for the 2nd year will be given after 12 months

Super Saver

₹3,900

2 Years

₹162/Month

Subscribe

Renews automatically, cancel anytime

Here’s what’s included in our digital subscription plans

Exclusive premium stories online

  • Over 30 premium stories daily, handpicked by our editors

Complimentary Access to The New York Times

  • News, Games, Cooking, Audio, Wirecutter & The Athletic

Business Standard Epaper

  • Digital replica of our daily newspaper — with options to read, save, and share

Curated Newsletters

  • Insights on markets, finance, politics, tech, and more delivered to your inbox

Market Analysis & Investment Insights

  • In-depth market analysis & insights with access to The Smart Investor

Archives

  • Repository of articles and publications dating back to 1997

Ad-free Reading

  • Uninterrupted reading experience with no advertisements

Seamless Access Across All Devices

  • Access Business Standard across devices — mobile, tablet, or PC, via web or app

More From This Section

First Published: Oct 02 2013 | 5:05 PM IST

Next Story