Five new sub-atomic particles discovered

Image
Press Trust of India Geneva
Last Updated : Mar 19 2017 | 1:57 PM IST
Scientists using the world's largest and most powerful particle accelerator have discovered a new system of five particles all in a single analysis.
The exceptionality of this discovery is that observing five new states all at once is a rather unique event, researchers said.
The LHCb experiment is one of seven particle physics detector experiments collecting data at the Large Hadron Collider accelerator at CERN (European Organisation for Nuclear Research).
The collaboration has announced the measurement of a very rare particle decay and evidence of a new manifestation of matter-antimatter asymmetry, to name just two examples.
The new particles were found to be excited states - a particle state that has a higher energy than the absolute minimum configuration (or ground state) - of a particle called Omega-c-zero.
This Omega-c-zero is a baryon, a particle with three quarks, containing two "strange" and one "charm" quark.
Omega-c-zero decays via the strong force into another baryon, called Xi-c-plus, (containing a "charm", a "strange" and an "up" quark) and a kaon K-.
Then the Xi-c-plusparticle decays in turn into a proton p, a kaon K- and a pion p+.
From the analysis of the trajectories and the energy left in the detector by all the particles in this final configuration, the LHCb collaboration could trace back the initial event - the decay of the Omega-c-zero - and its excited states.
These particle states are named, according to the standard convention, Oc(3000)0, Oc(3050)0, Oc(3066)0, Oc(3090)0 and Oc(3119)0. The numbers indicate their masses in megaelectronvolts (MeV), as measured by LHCb.
The next step will be the determination of the quantum numbers of these new particles - characteristic numbers used to identify the properties of a specific particle - and the determination of their theoretical significance.
This discovery will contribute to understanding how the three constituent quarks are bound inside a baryon and also to probing the correlation between quarks, which plays a key role in describing multi-quark states, such as tetraquarks and pentaquarks.

Disclaimer: No Business Standard Journalist was involved in creation of this content

*Subscribe to Business Standard digital and get complimentary access to The New York Times

Smart Quarterly

₹900

3 Months

₹300/Month

SAVE 25%

Smart Essential

₹2,700

1 Year

₹225/Month

SAVE 46%
*Complimentary New York Times access for the 2nd year will be given after 12 months

Super Saver

₹3,900

2 Years

₹162/Month

Subscribe

Renews automatically, cancel anytime

Here’s what’s included in our digital subscription plans

Exclusive premium stories online

  • Over 30 premium stories daily, handpicked by our editors

Complimentary Access to The New York Times

  • News, Games, Cooking, Audio, Wirecutter & The Athletic

Business Standard Epaper

  • Digital replica of our daily newspaper — with options to read, save, and share

Curated Newsletters

  • Insights on markets, finance, politics, tech, and more delivered to your inbox

Market Analysis & Investment Insights

  • In-depth market analysis & insights with access to The Smart Investor

Archives

  • Repository of articles and publications dating back to 1997

Ad-free Reading

  • Uninterrupted reading experience with no advertisements

Seamless Access Across All Devices

  • Access Business Standard across devices — mobile, tablet, or PC, via web or app

More From This Section

First Published: Mar 19 2017 | 1:57 PM IST

Next Story