Ideal wing shape may help harvest energy from water

Image
Press Trust of India New York
Last Updated : Jan 30 2019 | 11:50 AM IST

Scientists have determined the ideal wing shape for fast flapping flight -- an advance that may lead to better methods for harvesting energy from water as well as for enhancing air speed.

The research, published in the journal Proceedings of the Royal Society A, relies on a technique that mimics evolutionary biology to ascertain which structure yields the best pace.

"We can simulate biological evolution in the lab by generating a population of wings of different shapes, have them compete to achieve some desired objective, in this case, speed, and then have the best wings 'breed' to make related shapes that do even better," said Leif Ristroph, an assistant professor at New York University in the US.

The researchers created 3D-printed wings that are flapped mechanically and raced against one another, with the winners "breeding" via an evolutionary or genetic algorithm to create ever faster flyers.

In order to mimic this breeding process, the researchers began the experiment with 10 different wing shapes whose propulsion speeds were measured.

The algorithm then selected pairs of the fastest wings ("parents") and combined their attributes to create even-faster "daughters" that were then 3D-printed and tested.

They repeated this process to create 15 generations of wings, with each generation yielding offspring faster than the previous one.

"This 'survival of the fastest' process automatically discovers a quickest teardrop-shaped wing that most effectively manipulates the flows to generate thrust," said Ristroph.

"Because we explored a large variety of shapes in our study, we were also able to identify exactly what aspects of the shape were most responsible for the strong performance of the fastest wings," he said.

The results showed that the fastest wing shape has a razor-thin trailing edge, which helps to generate strong vortices or swirling flows during flapping.

The wing leaves a trail of these eddies as it pushes off the fluid to propel forward.

"We view the work as a case study and proof-of-concept for a much broader class of complex engineering problems, especially those that involve objects in flows, such as streamlining the shape to minimise drag on a structure," Ristroph said.

"We think this could be used, for example, to optimise the shape of a structure for harvesting the energy in water waves," he said.

Disclaimer: No Business Standard Journalist was involved in creation of this content

*Subscribe to Business Standard digital and get complimentary access to The New York Times

Smart Quarterly

₹900

3 Months

₹300/Month

SAVE 25%

Smart Essential

₹2,700

1 Year

₹225/Month

SAVE 46%
*Complimentary New York Times access for the 2nd year will be given after 12 months

Super Saver

₹3,900

2 Years

₹162/Month

Subscribe

Renews automatically, cancel anytime

Here’s what’s included in our digital subscription plans

Exclusive premium stories online

  • Over 30 premium stories daily, handpicked by our editors

Complimentary Access to The New York Times

  • News, Games, Cooking, Audio, Wirecutter & The Athletic

Business Standard Epaper

  • Digital replica of our daily newspaper — with options to read, save, and share

Curated Newsletters

  • Insights on markets, finance, politics, tech, and more delivered to your inbox

Market Analysis & Investment Insights

  • In-depth market analysis & insights with access to The Smart Investor

Archives

  • Repository of articles and publications dating back to 1997

Ad-free Reading

  • Uninterrupted reading experience with no advertisements

Seamless Access Across All Devices

  • Access Business Standard across devices — mobile, tablet, or PC, via web or app

More From This Section

First Published: Jan 30 2019 | 11:50 AM IST

Next Story