Large quantum computers closer to reality

Image
Press Trust of India Melbourne
Last Updated : Apr 13 2015 | 1:02 PM IST
Scientists have for the first time encoded quantum information using simple electrical pulses, bringing affordable large-scale quantum computers one step closer to reality.
Unlike conventional computers that store data on transistors and hard drives, quantum computers encode data in the quantum states of microscopic objects called qubits.
The University of New South Wales (UNSW) team was first in the world to demonstrate single-atom spin qubits in silicon.
The team has already improved the control of these qubits to an accuracy of above 99 per cent and established the world record for how long quantum information can be stored in the solid state.
It has now demonstrated a key step that had remained elusive since 1998.
"We demonstrated that a highly coherent qubit, like the spin of a single phosphorus atom in isotopically enriched silicon, can be controlled using electric fields, instead of using pulses of oscillating magnetic fields," said UNSW's Dr Arne Laucht, post-doctoral researcher and lead author of the study.
UNSW Associate Professor Andrea Morello said the method works by distorting the shape of the electron cloud attached to the atom, using a very localised electric field.
"This distortion at the atomic level has the effect of modifying the frequency at which the electron responds.
"Therefore, we can selectively choose which qubit to operate. It's a bit like selecting which radio station we tune to, by turning a simple knob. Here, the 'knob' is the voltage applied to a small electrode placed above the atom," said Morello.
The findings suggest that it would be possible to locally control individual qubits with electric fields in a large-scale quantum computer using only inexpensive voltage generators, rather than the expensive high-frequency microwave sources.
Moreover, this specific type of quantum bit can be manufactured using a similar technology to that employed for the production of everyday computers, drastically reducing the time and cost of development.
The finding was published in the journal Science Advances.
*Subscribe to Business Standard digital and get complimentary access to The New York Times

Smart Quarterly

₹900

3 Months

₹300/Month

SAVE 25%

Smart Essential

₹2,700

1 Year

₹225/Month

SAVE 46%
*Complimentary New York Times access for the 2nd year will be given after 12 months

Super Saver

₹3,900

2 Years

₹162/Month

Subscribe

Renews automatically, cancel anytime

Here’s what’s included in our digital subscription plans

Exclusive premium stories online

  • Over 30 premium stories daily, handpicked by our editors

Complimentary Access to The New York Times

  • News, Games, Cooking, Audio, Wirecutter & The Athletic

Business Standard Epaper

  • Digital replica of our daily newspaper — with options to read, save, and share

Curated Newsletters

  • Insights on markets, finance, politics, tech, and more delivered to your inbox

Market Analysis & Investment Insights

  • In-depth market analysis & insights with access to The Smart Investor

Archives

  • Repository of articles and publications dating back to 1997

Ad-free Reading

  • Uninterrupted reading experience with no advertisements

Seamless Access Across All Devices

  • Access Business Standard across devices — mobile, tablet, or PC, via web or app

More From This Section

First Published: Apr 13 2015 | 1:02 PM IST

Next Story