Researchers from Johns Hopkins University created a three-dimensional complement of human retinal tissue in the laboratory, which includes functioning photoreceptor cells capable of responding to light, the first step in the process of converting it into visual images.
"We have basically created a miniature human retina in a dish that not only has the architectural organisation of the retina but also has the ability to sense light," said study leader M Valeria Canto-Soler, an assistant professor of ophthalmology at the Johns Hopkins University School of Medicine.
"Is our lab retina capable of producing a visual signal that the brain can interpret into an image? Probably not, but this is a good start," she said.
The achievement emerged from experiments with human induced pluripotent stem cells (iPS) and could, eventually, enable genetically engineered retinal cell transplants that halt or even reverse a patient's march toward blindness, the researchers said.
Using a simple, straightforward technique they developed to foster the growth of the retinal progenitors, Canto-Soler and her team saw retinal cells and then tissue grow in their petri dishes, said Xiufeng Zhong, a postdoctoral researcher in Canto-Soler's lab.
The growth, Zhong said, corresponded in timing and duration to retinal development in a human foetus in the womb. Moreover, the photoreceptors were mature enough to develop outer segments, a structure essential for photoreceptors to function.
Retinal tissue is complex, comprising seven major cell types, including six kinds of neurons, which are all organised into specific cell layers that absorb and process light, "see," and transmit those visual signals to the brain for interpretation.
When the retinal tissue was at a stage equivalent to 28 weeks of development in the womb, with fairly mature photoreceptors, the researchers tested these mini-retinas to see if the photoreceptors could in fact sense and transform light into visual signals.
They found the lab-grown photoreceptors responded to light the way retinal rods do.
The study was published in the journal Nature Communications.
You’ve reached your limit of {{free_limit}} free articles this month.
Subscribe now for unlimited access.
Already subscribed? Log in
Subscribe to read the full story →
Smart Quarterly
₹900
3 Months
₹300/Month
Smart Essential
₹2,700
1 Year
₹225/Month
Super Saver
₹3,900
2 Years
₹162/Month
Renews automatically, cancel anytime
Here’s what’s included in our digital subscription plans
Exclusive premium stories online
Over 30 premium stories daily, handpicked by our editors


Complimentary Access to The New York Times
News, Games, Cooking, Audio, Wirecutter & The Athletic
Business Standard Epaper
Digital replica of our daily newspaper — with options to read, save, and share


Curated Newsletters
Insights on markets, finance, politics, tech, and more delivered to your inbox
Market Analysis & Investment Insights
In-depth market analysis & insights with access to The Smart Investor


Archives
Repository of articles and publications dating back to 1997
Ad-free Reading
Uninterrupted reading experience with no advertisements


Seamless Access Across All Devices
Access Business Standard across devices — mobile, tablet, or PC, via web or app
