Mars study offers clues to origin of life on Earth

Image
Press Trust of India Washington
Last Updated : Oct 07 2017 | 4:42 PM IST
NASA scientists have discovered evidence for ancient sea-floor hydrothermal deposits on Mars which may offer clues about the origin of life on Earth.
Researchers examined observations by NASA's Mars Reconnaissance Orbiter (MRO) of massive deposits in a basin on southern Mars.
They interpret the data as evidence that these deposits were formed by heated water from a volcanically active part of the planet's crust entering the bottom of a large sea long ago.
"Even if we never find evidence that there has been life on Mars, this site can tell us about the type of environment where life may have begun on Earth," said Paul Niles of NASA's Johnson Space Center in the US.
"Volcanic activity combined with standing water provided conditions that were likely similar to conditions that existed on Earth at about the same time - when early life was evolving here," said Niles, co-author of the research published in the journal Nature Communications.
Mars today has neither standing water nor volcanic activity. Researchers estimate an age of about 3.7 billion years for the martian deposits attributed to seafloor hydrothermal activity.
Undersea hydrothermal conditions on Earth at about that same time are a strong candidate for where and when life on Earth began, researchers said.
Earth still has such conditions, where many forms of life thrive on chemical energy extracted from rocks, without sunlight, they said.
However, due to Earth's active crust, our planet holds little direct geological evidence preserved from the time when life began.
The possibility of undersea hydrothermal activity inside icy moons such as Europa at Jupiter and Enceladus at Saturn feeds interest in them as destinations in the quest to find extraterrestrial life.
Observations by MRO's Compact Reconnaissance Spectrometer for Mars (CRISM) provided the data for identifying minerals in massive deposits within Mars' Eridania basin, which lies in a region with some of the red planet's most ancient exposed crust.
"This site gives us a compelling story for a deep, long- lived sea and a deep-sea hydrothermal environment," Niles said.
The researchers estimate the ancient Eridania sea held about 210,000 cubic kilometres of water.
The mix of minerals identified from the spectrometer data, including serpentine, talc and carbonate, and the shape and texture of the thick bedrock layers, led to identifying possible seafloor hydrothermal deposits.
The area has lava flows that post-date the disappearance of the sea. The researchers cite these as evidence that this is an area of Mars' crust with a volcanic susceptibility that also could have produced effects earlier, when the sea was present.

Disclaimer: No Business Standard Journalist was involved in creation of this content

*Subscribe to Business Standard digital and get complimentary access to The New York Times

Smart Quarterly

₹900

3 Months

₹300/Month

SAVE 25%

Smart Essential

₹2,700

1 Year

₹225/Month

SAVE 46%
*Complimentary New York Times access for the 2nd year will be given after 12 months

Super Saver

₹3,900

2 Years

₹162/Month

Subscribe

Renews automatically, cancel anytime

Here’s what’s included in our digital subscription plans

Exclusive premium stories online

  • Over 30 premium stories daily, handpicked by our editors

Complimentary Access to The New York Times

  • News, Games, Cooking, Audio, Wirecutter & The Athletic

Business Standard Epaper

  • Digital replica of our daily newspaper — with options to read, save, and share

Curated Newsletters

  • Insights on markets, finance, politics, tech, and more delivered to your inbox

Market Analysis & Investment Insights

  • In-depth market analysis & insights with access to The Smart Investor

Archives

  • Repository of articles and publications dating back to 1997

Ad-free Reading

  • Uninterrupted reading experience with no advertisements

Seamless Access Across All Devices

  • Access Business Standard across devices — mobile, tablet, or PC, via web or app

More From This Section

First Published: Oct 07 2017 | 4:42 PM IST

Next Story