Mathematical method shows structure in brain neural activity

Image
Press Trust of India Washington
Last Updated : Oct 20 2015 | 1:57 PM IST
A newly-developed mathematical method can detect geometric structure in neural activity in the brain, scientists say.
"Previously, in order to understand this structure, scientists needed to relate neural activity to some specific external stimulus," said Vladimir Itskov, associate professor of mathematics at Penn State University in US.
"Our method is the first to be able to reveal this structure without our knowing an external stimulus ahead of time. We've now shown that our new method will allow us to explore the organisational structure of neurons without knowing their function in advance," said Itskov.
"The traditional methods used by researchers to analyse the relationship between the activities of neurons were adopted from physics," said Carina Curto, associate professor of mathematics at Penn State.
"But neuroscience data doesn't necessarily play by the same rules as data from physics, so we need new tools. Our method is a first step toward developing a new mathematical toolkit to uncover the structure of neural circuits with unknown function in the brain," Curto said.
The method - clique topology - was developed by an interdisciplinary team of researchers at Penn State, the University of Pennsylvania, the Howard Hughes Medical Institute, and the University of Nebraska-Lincoln.
"We have adopted approaches from the field of algebraic topology that previously had been used primarily in the domain of pure mathematics and have applied them to experimental data on the activity of place cells - specialised neurons in the part of the brain called the hippocampus that sense the position of an animal in its environment," said Curto.
The researchers measured the activity of place cells in the brains of rats during three different experimental conditions.
They then analysed the pairwise correlations of this activity - how the firing of each neuron was related to the firing of every other neuron.
In the first condition, the rats were allowed to roam freely in their environment - a behaviour where the activity of place cells is directly related to the location of the animal in its environment.
They searched the data to find groups of neurons, or "cliques," in which the activity of all members of the clique was related to the activity of every other member.
Their analysis of these cliques, using methods from algebraic topology, showed an organised geometric structure.
The researchers found similar structure in the activities among place cells in the other two conditions they tested, wheel-running and sleep, where place cells are not expected to have geometric organisation.
"Because the structure we detected was similar in all three experimental conditions, we think that we are picking up the fundamental organisation of place cells in the hippocampus," said Itskov.
The research appears in the journal Proceedings of the National Academy of Sciences.
*Subscribe to Business Standard digital and get complimentary access to The New York Times

Smart Quarterly

₹900

3 Months

₹300/Month

SAVE 25%

Smart Essential

₹2,700

1 Year

₹225/Month

SAVE 46%
*Complimentary New York Times access for the 2nd year will be given after 12 months

Super Saver

₹3,900

2 Years

₹162/Month

Subscribe

Renews automatically, cancel anytime

Here’s what’s included in our digital subscription plans

Exclusive premium stories online

  • Over 30 premium stories daily, handpicked by our editors

Complimentary Access to The New York Times

  • News, Games, Cooking, Audio, Wirecutter & The Athletic

Business Standard Epaper

  • Digital replica of our daily newspaper — with options to read, save, and share

Curated Newsletters

  • Insights on markets, finance, politics, tech, and more delivered to your inbox

Market Analysis & Investment Insights

  • In-depth market analysis & insights with access to The Smart Investor

Archives

  • Repository of articles and publications dating back to 1997

Ad-free Reading

  • Uninterrupted reading experience with no advertisements

Seamless Access Across All Devices

  • Access Business Standard across devices — mobile, tablet, or PC, via web or app

More From This Section

First Published: Oct 20 2015 | 1:57 PM IST

Next Story