The puzzling appearance of the ice cloud has prompted NASA scientists to suggest that a different process than previously thought - possibly similar to one seen over Earth's poles - could be forming the clouds.
Located in Titan's stratosphere, the cloud is made of a compound of carbon and nitrogen known as dicyanoacetylene (C4N2), an ingredient in the chemical cocktail that colours the giant moon's hazy, brownish-orange atmosphere.
Decades ago, the infrared instrument on NASA's Voyager 1 spacecraft spotted an ice cloud just like this one on Titan.
Using Cassini's composite infrared spectrometer, or CIRS, researchers found a large, high-altitude cloud made of the same frozen chemical.
Just as Voyager found, when it comes to the vapour form of this chemical, CIRS reported that Titan's stratosphere is as dry as a desert, NASA said.
"The appearance of this ice cloud goes against everything we know about the way clouds form on Titan," said Carrie Anderson, a CIRS co-investigator at NASA's Goddard Space Flight Centre and lead author of the study.
A different condensation process takes place in the Titan's stratosphere - the region above the troposphere - at the moon's north and south winter poles.
In this case, layers of clouds condense as the global circulation pattern forces warm gases downward at the pole. The gases then condense as they sink through cooler and cooler layers of the polar stratosphere.
Either way, a cloud forms when the air temperature and pressure are favourable for the vapour to condense into ice. The vapour and the ice reach a balance point - an equilibrium - that is determined by the air temperature and pressure.
"For clouds that condense, this equilibrium is mandatory, like the law of gravity," said Robert Samuelson, scientist at Goddard.
However, the numbers do not compute for the cloud made from dicyanoacetylene. The scientists determined that they would need at least 100 times more vapour to form an ice cloud where the cloud top was observed by Cassini's CIRS.
Instead of the cloud forming by condensation, they think the C4N2 ice forms because of reactions taking place on other kinds of ice particles.
Researchers call this "solid-state chemistry," because the reactions involve the ice, or solid, form of the chemical.
Disclaimer: No Business Standard Journalist was involved in creation of this content
You’ve reached your limit of {{free_limit}} free articles this month.
Subscribe now for unlimited access.
Already subscribed? Log in
Subscribe to read the full story →
Smart Quarterly
₹900
3 Months
₹300/Month
Smart Essential
₹2,700
1 Year
₹225/Month
Super Saver
₹3,900
2 Years
₹162/Month
Renews automatically, cancel anytime
Here’s what’s included in our digital subscription plans
Exclusive premium stories online
Over 30 premium stories daily, handpicked by our editors


Complimentary Access to The New York Times
News, Games, Cooking, Audio, Wirecutter & The Athletic
Business Standard Epaper
Digital replica of our daily newspaper — with options to read, save, and share


Curated Newsletters
Insights on markets, finance, politics, tech, and more delivered to your inbox
Market Analysis & Investment Insights
In-depth market analysis & insights with access to The Smart Investor


Archives
Repository of articles and publications dating back to 1997
Ad-free Reading
Uninterrupted reading experience with no advertisements


Seamless Access Across All Devices
Access Business Standard across devices — mobile, tablet, or PC, via web or app
