NASA spots 'impossible' cloud on Titan

Image
Press Trust of India Washington
Last Updated : Sep 22 2016 | 1:32 PM IST
NASA's Cassini spacecraft has spotted a mysterious ice cloud over Saturn's largest moon, Titan, and its appearance challenges everything known about the moon's atmosphere.
The puzzling appearance of the ice cloud has prompted NASA scientists to suggest that a different process than previously thought - possibly similar to one seen over Earth's poles - could be forming the clouds.
Located in Titan's stratosphere, the cloud is made of a compound of carbon and nitrogen known as dicyanoacetylene (C4N2), an ingredient in the chemical cocktail that colours the giant moon's hazy, brownish-orange atmosphere.
Decades ago, the infrared instrument on NASA's Voyager 1 spacecraft spotted an ice cloud just like this one on Titan.
What has puzzled scientists ever since is that they detected less than one per cent of the dicyanoacetylene gas needed for the cloud to condense, NASA said.
Using Cassini's composite infrared spectrometer, or CIRS, researchers found a large, high-altitude cloud made of the same frozen chemical.
Just as Voyager found, when it comes to the vapour form of this chemical, CIRS reported that Titan's stratosphere is as dry as a desert, NASA said.
"The appearance of this ice cloud goes against everything we know about the way clouds form on Titan," said Carrie Anderson, a CIRS co-investigator at NASA's Goddard Space Flight Centre and lead author of the study.
The typical process for forming clouds involves condensation. On Earth, we are familiar with the cycle of evaporation and condensation of water.
A different condensation process takes place in the Titan's stratosphere - the region above the troposphere - at the moon's north and south winter poles.
In this case, layers of clouds condense as the global circulation pattern forces warm gases downward at the pole. The gases then condense as they sink through cooler and cooler layers of the polar stratosphere.
Either way, a cloud forms when the air temperature and pressure are favourable for the vapour to condense into ice. The vapour and the ice reach a balance point - an equilibrium - that is determined by the air temperature and pressure.
Because of this equilibrium, scientists can calculate the amount of vapour where ice is present.
"For clouds that condense, this equilibrium is mandatory, like the law of gravity," said Robert Samuelson, scientist at Goddard.
However, the numbers do not compute for the cloud made from dicyanoacetylene. The scientists determined that they would need at least 100 times more vapour to form an ice cloud where the cloud top was observed by Cassini's CIRS.
Instead of the cloud forming by condensation, they think the C4N2 ice forms because of reactions taking place on other kinds of ice particles.
Researchers call this "solid-state chemistry," because the reactions involve the ice, or solid, form of the chemical.
The findings were published in the journal Geophysical Research Letters.

Disclaimer: No Business Standard Journalist was involved in creation of this content

*Subscribe to Business Standard digital and get complimentary access to The New York Times

Smart Quarterly

₹900

3 Months

₹300/Month

SAVE 25%

Smart Essential

₹2,700

1 Year

₹225/Month

SAVE 46%
*Complimentary New York Times access for the 2nd year will be given after 12 months

Super Saver

₹3,900

2 Years

₹162/Month

Subscribe

Renews automatically, cancel anytime

Here’s what’s included in our digital subscription plans

Exclusive premium stories online

  • Over 30 premium stories daily, handpicked by our editors

Complimentary Access to The New York Times

  • News, Games, Cooking, Audio, Wirecutter & The Athletic

Business Standard Epaper

  • Digital replica of our daily newspaper — with options to read, save, and share

Curated Newsletters

  • Insights on markets, finance, politics, tech, and more delivered to your inbox

Market Analysis & Investment Insights

  • In-depth market analysis & insights with access to The Smart Investor

Archives

  • Repository of articles and publications dating back to 1997

Ad-free Reading

  • Uninterrupted reading experience with no advertisements

Seamless Access Across All Devices

  • Access Business Standard across devices — mobile, tablet, or PC, via web or app

More From This Section

First Published: Sep 22 2016 | 1:32 PM IST

Next Story