New invisibility cloak makes objects vanish

Image
Press Trust of India Washington
Last Updated : Nov 12 2013 | 1:39 PM IST
Scientists have designed a new ultra-thin 'Harry Potter-style' invisibility cloak which hides objects over a wide range of frequencies.
Up until now, the invisibility cloaks put forward by scientists have been fairly bulky contraptions - an obvious flaw for those interested in Harry Potter-style applications.
However, researchers from the US have developed a cloak that is just micrometres thick and can hide three-dimensional objects from microwaves in their natural environment, in all directions and from all of the observers' positions.
Researchers from the University of Texas at Austin, have used a new, ultra-thin layer called a "metascreen."
The metascreen cloak was made by attaching strips of 66 micrometre-thick copper tape to a 100 micrometre-thick, flexible polycarbonate film in a fishnet design.
It was used to cloak an 18 cm cylindrical rod from microwaves and showed optimal functionality when the microwaves were at a frequency of 3.6 GHz and over a moderately broad bandwidth.
The researchers also predict that due to the inherent conformability of the metascreen and the robustness of the proposed cloaking technique, oddly shaped and asymmetrical objects can be cloaked with the same principles.
Objects are detected when waves - whether they are sound, light, x-rays or microwaves - rebound off its surface.
The reason we see objects is because light rays bounce off their surface towards our eyes and our eyes are able to process the information.
Whilst previous cloaking studies have used metamaterials to divert, or bend, the incoming waves around an object, this new method, which the researchers dub "mantle cloaking," uses an ultra-thin metallic metascreen to cancel out the waves as they are scattered off the cloaked object.
"When the scattered fields from the cloak and the object interfere, they cancel each other out and the overall effect is transparency and invisibility at all angles of observation," said co-author, Professor Andrea Alu.
"The advantages of the mantle cloaking over existing techniques are its conformability, ease of manufacturing and improved bandwidth. We have shown that you don't need a bulk metamaterial to cancel the scattering from an object - a simple patterned surface that is conformal to the object may be sufficient and, in many regards, even better than a bulk metamaterial," said Alu.
The study was published in the Institute of Physics and German Physical Society's New Journal of Physics.
*Subscribe to Business Standard digital and get complimentary access to The New York Times

Smart Quarterly

₹900

3 Months

₹300/Month

SAVE 25%

Smart Essential

₹2,700

1 Year

₹225/Month

SAVE 46%
*Complimentary New York Times access for the 2nd year will be given after 12 months

Super Saver

₹3,900

2 Years

₹162/Month

Subscribe

Renews automatically, cancel anytime

Here’s what’s included in our digital subscription plans

Exclusive premium stories online

  • Over 30 premium stories daily, handpicked by our editors

Complimentary Access to The New York Times

  • News, Games, Cooking, Audio, Wirecutter & The Athletic

Business Standard Epaper

  • Digital replica of our daily newspaper — with options to read, save, and share

Curated Newsletters

  • Insights on markets, finance, politics, tech, and more delivered to your inbox

Market Analysis & Investment Insights

  • In-depth market analysis & insights with access to The Smart Investor

Archives

  • Repository of articles and publications dating back to 1997

Ad-free Reading

  • Uninterrupted reading experience with no advertisements

Seamless Access Across All Devices

  • Access Business Standard across devices — mobile, tablet, or PC, via web or app

More From This Section

First Published: Nov 12 2013 | 1:39 PM IST

Next Story