New laser tech sniffs out toxic gases from afar

Image
Press Trust of India Washington
Last Updated : Dec 04 2014 | 4:17 PM IST
Scientists have developed a new way to sniff out tiny amounts of toxic gases - a whiff of nerve gas, for example, or a hint of a chemical spill - from up to one kilometre away.
The technology can discriminate one type of gas from another with greater specificity than most remote sensors - even in complex mixtures of similar chemicals - and under normal atmospheric pressure, something that wasn't thought possible before, researchers said.
The researchers say the technique could be used to test for radioactive byproducts from nuclear accidents or arms control treaty violations, for example, or for remote monitoring of smokestacks or factories for signs of air pollution or chemical weapons.
"You could imagine setting this up around the perimeter of an area where soldiers are living, as a kind of trip wire for nerve gas," said lead author Henry Everitt, an Army scientist and adjunct professor of physics at Duke University.
The technique uses a form of invisible light called terahertz radiation, or T-rays.
Already used to detect tumours and screen airport passengers, T-rays fall between microwaves and infrared radiation on the electromagnetic spectrum.
Zapping a gas molecule with a terahertz beam of just the right energy makes the molecule switch between alternate rotational states, producing a characteristic absorption spectrum "fingerprint," like the lines of a bar code.
The new approach by Ohio State University physicist Frank De Lucia and colleagues works by blasting a cloud of gas with two beams at once.
One is a steady terahertz beam, tuned to the specific rotational transition energy of the gas molecule they're looking for. The second beam comes from a laser, operating in the infrared, which emits light in high-speed pulses.
The researchers directed the two beams onto samples of methyl fluoride, methyl chloride and methyl bromide gases in the lab to determine what combination of laser settings would be required to detect trace amounts of these gases under different weather conditions.
"Terahertz waves will only propagate so far before water vapour in the air absorbs them, which means the approach works a lot better on, say, a cold winter day than a hot summer day," Everitt said.
The researchers say they are able to detect trace gases from up to one kilometre away. But even under ideal weather conditions, the technology is not ready to be deployed in the field just yet.
The study was published in the journal Physical Review.
*Subscribe to Business Standard digital and get complimentary access to The New York Times

Smart Quarterly

₹900

3 Months

₹300/Month

SAVE 25%

Smart Essential

₹2,700

1 Year

₹225/Month

SAVE 46%
*Complimentary New York Times access for the 2nd year will be given after 12 months

Super Saver

₹3,900

2 Years

₹162/Month

Subscribe

Renews automatically, cancel anytime

Here’s what’s included in our digital subscription plans

Exclusive premium stories online

  • Over 30 premium stories daily, handpicked by our editors

Complimentary Access to The New York Times

  • News, Games, Cooking, Audio, Wirecutter & The Athletic

Business Standard Epaper

  • Digital replica of our daily newspaper — with options to read, save, and share

Curated Newsletters

  • Insights on markets, finance, politics, tech, and more delivered to your inbox

Market Analysis & Investment Insights

  • In-depth market analysis & insights with access to The Smart Investor

Archives

  • Repository of articles and publications dating back to 1997

Ad-free Reading

  • Uninterrupted reading experience with no advertisements

Seamless Access Across All Devices

  • Access Business Standard across devices — mobile, tablet, or PC, via web or app

More From This Section

First Published: Dec 04 2014 | 4:17 PM IST

Next Story