New material removes water pollutants using solar energy

Image
Press Trust of India London
Last Updated : Jul 01 2017 | 2:07 PM IST
Scientists have developed a new non- toxic material that uses solar energy to degrade harmful synthetic dye pollutants which are released at a rate of nearly 300,000 tonnes a year into the world's water.
The novel, non-hazardous photocatalytic material developed researchers at Swansea University in the UK effectively removes dye pollutants from water, adsorbing more than 90 per cent of the dye and enhancing the rate of dye breakdown by almost ten times using visible light.
By heating the reaction mixture at high pressures inside a sealed container, the composite is synthesised by growing ultra-thin "nanowires" of tungsten oxide on the surface of tiny particles of tantalum nitride.
As a result of the incredibly small size of the two material components - both the tantalum nitride and tungsten oxide are typically less than 40 billionths of a metre in diameter - the composite provides a huge surface area for dye capture.
The material then proceeds to break the dye down into smaller, harmless molecules using the energy provided by sunlight, in a process known as "photocatalytic degradation." Having removed the harmful dyes, the catalyst may simply be filtered from the cleaned water and reused.
While the photocatalytic degradation of dyes has been investigated for several decades, it is only relatively recently that researchers have developed materials capable of absorbing the visible part of the solar spectrum - other materials, such as titanium dioxide, are also able to break down dyes using solar energy, but their efficiency is limited as they only absorb higher energy, ultra-violet light.
By making use of a much greater range of the spectrum, the new materials are able to remove pollutants at a far superior rate.
"Now that we've demonstrated the capabilities of our composite, we aim to not just improve on the material further, but to also begin work on scaling up the synthesis for real- world application," said Daniel Jones, from the Energy Safety Research Institute in Swansea University.
"We're also exploring its viability in other areas, such as the photocatalysed splitting of water to generate hydrogen," said Jones.
The research was published in the journal Scientific Reports.

Disclaimer: No Business Standard Journalist was involved in creation of this content

*Subscribe to Business Standard digital and get complimentary access to The New York Times

Smart Quarterly

₹900

3 Months

₹300/Month

SAVE 25%

Smart Essential

₹2,700

1 Year

₹225/Month

SAVE 46%
*Complimentary New York Times access for the 2nd year will be given after 12 months

Super Saver

₹3,900

2 Years

₹162/Month

Subscribe

Renews automatically, cancel anytime

Here’s what’s included in our digital subscription plans

Exclusive premium stories online

  • Over 30 premium stories daily, handpicked by our editors

Complimentary Access to The New York Times

  • News, Games, Cooking, Audio, Wirecutter & The Athletic

Business Standard Epaper

  • Digital replica of our daily newspaper — with options to read, save, and share

Curated Newsletters

  • Insights on markets, finance, politics, tech, and more delivered to your inbox

Market Analysis & Investment Insights

  • In-depth market analysis & insights with access to The Smart Investor

Archives

  • Repository of articles and publications dating back to 1997

Ad-free Reading

  • Uninterrupted reading experience with no advertisements

Seamless Access Across All Devices

  • Access Business Standard across devices — mobile, tablet, or PC, via web or app

More From This Section

First Published: Jul 01 2017 | 2:07 PM IST

Next Story