New method to produce 3D images of lungs developed

Image
Press Trust of India London
Last Updated : Dec 20 2015 | 11:57 AM IST
For the first time, scientists have successfully produced 3D images showing oxygen and carbon dioxide transport in the lungs, using a new method that could lead to better treatment for chronic obstructive pulmonary disease (COPD) and lung cancer.
Every time we breathe, oxygen and carbon dioxide is transferred between our blood and the air in the lungs.
It is crucial for us to maintain life that this gas transport functions, and detailed knowledge about the movement of oxygen and carbon dioxide is therefore also important.
Not least in the case of patients with pulmonary lung diseases such as COPD, lung cancer and asthma, and also for acutely ill patients who are on a respirator.
For these patients, the latest research in the area may turn out to be the first step on the road to more effective forms of treatment.
"We are the first to develop a new model for how you can see into the lungs. The model provides a kind of 3D map of how and where the CO2 and oxygen transfers take place," said Troels Johansen, PhD student at the Department of Clinical Medicine at Aarhus University in Denmark.
Working in collaboration with researchers from Harvard Medical School, Johansen developed a mathematical model that provides the basis for the 3D images, which in turn are developed from positron emission tomography (PET) scans.
The new model can be used for different groups of patients, the researchers said.
"For example, if we take cancer patients with a tumour in the lung, it will be easier to predict the consequences of removing part of the lung by surgery," Johansen said.
"It will also be easier for doctors to determine the COPD patients who will benefit from an operation and those who will not," he said.
"We also believe that the new model will come to contribute with knowledge that can help patients in intensive care who are on a respirator," he said.
"The new model is not only able to make it easier for doctors to foresee the consequences of high-risk lung operations. It will also contribute new basic knowledge about the crucial oxygen and carbon dioxide transfer in both healthy and diseased lungs," he said.
The findings were published in the journal Respiratory Physiology and Neurobiology.
*Subscribe to Business Standard digital and get complimentary access to The New York Times

Smart Quarterly

₹900

3 Months

₹300/Month

SAVE 25%

Smart Essential

₹2,700

1 Year

₹225/Month

SAVE 46%
*Complimentary New York Times access for the 2nd year will be given after 12 months

Super Saver

₹3,900

2 Years

₹162/Month

Subscribe

Renews automatically, cancel anytime

Here’s what’s included in our digital subscription plans

Exclusive premium stories online

  • Over 30 premium stories daily, handpicked by our editors

Complimentary Access to The New York Times

  • News, Games, Cooking, Audio, Wirecutter & The Athletic

Business Standard Epaper

  • Digital replica of our daily newspaper — with options to read, save, and share

Curated Newsletters

  • Insights on markets, finance, politics, tech, and more delivered to your inbox

Market Analysis & Investment Insights

  • In-depth market analysis & insights with access to The Smart Investor

Archives

  • Repository of articles and publications dating back to 1997

Ad-free Reading

  • Uninterrupted reading experience with no advertisements

Seamless Access Across All Devices

  • Access Business Standard across devices — mobile, tablet, or PC, via web or app

More From This Section

First Published: Dec 20 2015 | 11:57 AM IST

Next Story