New state of matter may lead to better electronics

Image
Press Trust of India New York
Last Updated : Aug 16 2019 | 12:50 PM IST

Scientists in the US have uncovered a new state of matter -- a breakthrough that offers promise for increasing storage capabilities in electronic devices and enhancing quantum computing.

"Our research has succeeded in revealing experimental evidence for a new state of matter -- topological superconductivity," said Javad Shabani, an assistant professor at New York University in the US.

"This new topological state can be manipulated in ways that could both speed calculation in quantum computing and boost storage," Shabani said.

The work, reported in a paper on pre-print repository arXiv, centers on quantum computing -- a method that can make calculations at significantly faster rates than can conventional computing.

This is because conventional computers process digital bits in the form of 0s and 1s while quantum computers deploy quantum bits (qubits) to tabulate any value between 0 and 1, exponentially lifting the capacity and speed of data processing.

Shabani and his colleagues from the University of Buffalo and Wayne State University analysed a transition of quantum state from its conventional state to a new topological state, measuring the energy barrier between these states.

They supplemented this by directly measuring signature characteristics of this transition in the order parameter that governs the new topological superconductivity phase.

The team focused the inquiry on Majorana particles, which are their own antiparticles --substances with the same mass, but with the opposite physical charge.

Scientists see value in Majorana particles because of their potential to store quantum information in a special computation space where quantum information is protected from the environment noise.

However, there is no natural host material for these particles, also known as Majorana fermions.

As a result, researchers have sought to engineer platforms -- ie, new forms of matter -- on which these calculations could be conducted.

"The new discovery of topological superconductivity in a two-dimensional platform paves the way for building scalable topological qubits to not only store quantum information, but also to manipulate the quantum states that are free of error," Shabani said.

Disclaimer: No Business Standard Journalist was involved in creation of this content

*Subscribe to Business Standard digital and get complimentary access to The New York Times

Smart Quarterly

₹900

3 Months

₹300/Month

SAVE 25%

Smart Essential

₹2,700

1 Year

₹225/Month

SAVE 46%
*Complimentary New York Times access for the 2nd year will be given after 12 months

Super Saver

₹3,900

2 Years

₹162/Month

Subscribe

Renews automatically, cancel anytime

Here’s what’s included in our digital subscription plans

Exclusive premium stories online

  • Over 30 premium stories daily, handpicked by our editors

Complimentary Access to The New York Times

  • News, Games, Cooking, Audio, Wirecutter & The Athletic

Business Standard Epaper

  • Digital replica of our daily newspaper — with options to read, save, and share

Curated Newsletters

  • Insights on markets, finance, politics, tech, and more delivered to your inbox

Market Analysis & Investment Insights

  • In-depth market analysis & insights with access to The Smart Investor

Archives

  • Repository of articles and publications dating back to 1997

Ad-free Reading

  • Uninterrupted reading experience with no advertisements

Seamless Access Across All Devices

  • Access Business Standard across devices — mobile, tablet, or PC, via web or app

More From This Section

First Published: Aug 16 2019 | 12:50 PM IST

Next Story