Current terahertz sources are large, multi-component systems that sometimes require complex vacuum systems, external pump lasers and even cryogenic cooling.
The devices are heavy, expensive, and hard to transport, operate, and maintain.
"A single-component solution capable of room temperature and widely tunable operation is highly desirable to enable next generation terahertz systems," said Manijeh Razeghi, Walter P Murphy Professor of Electrical Engineering and Computer Science at Northwestern University's McCormick School of Engineering and Applied Science.
Razeghi and her team have been working to develop such a device.
Based on nonlinear mixing in quantum cascade lasers, the source can emit up to 1.9 milliwatts of power and has a wide frequency coverage of 1 to 4.6 terahertz.
You’ve reached your limit of {{free_limit}} free articles this month.
Subscribe now for unlimited access.
Already subscribed? Log in
Subscribe to read the full story →
Smart Quarterly
₹900
3 Months
₹300/Month
Smart Essential
₹2,700
1 Year
₹225/Month
Super Saver
₹3,900
2 Years
₹162/Month
Renews automatically, cancel anytime
Here’s what’s included in our digital subscription plans
Exclusive premium stories online
Over 30 premium stories daily, handpicked by our editors


Complimentary Access to The New York Times
News, Games, Cooking, Audio, Wirecutter & The Athletic
Business Standard Epaper
Digital replica of our daily newspaper — with options to read, save, and share


Curated Newsletters
Insights on markets, finance, politics, tech, and more delivered to your inbox
Market Analysis & Investment Insights
In-depth market analysis & insights with access to The Smart Investor


Archives
Repository of articles and publications dating back to 1997
Ad-free Reading
Uninterrupted reading experience with no advertisements


Seamless Access Across All Devices
Access Business Standard across devices — mobile, tablet, or PC, via web or app
