Google's artificial intelligence (AI) system that analyses data from NASA's planet-hunting probe to identify the most promising signals has now been made public to help amateur scientist spot new worlds in the universe.
The system has recently discovered two exoplanets by training a neural network to analyse data from NASA's Kepler space telescope and accurately identify the most promising planet signals.
This was done by an initial analysis of about 700 stars.
"We consider this a successful proof-of-concept for using machine learning to discover exoplanets, and more generally another example of using machine learning to make meaningful gains in a variety of scientific disciplines," Chris Shallue, Senior Software Engineer with the Google Brain Team wrote in a blog post.
"We hope this release will prove a useful starting point for developing similar models for other NASA missions, like K2 (Kepler's second mission) and the upcoming Transiting Exoplanet Survey Satellite mission," he wrote.
The Kepler telescope hunts for planets by measuring the brightness of a star over time. When a planet passes in front of the star, it temporarily blocks some of the light, which causes the measured brightness to decrease and then increase again shortly.
To search for planets in Kepler data, scientists use automated software to detect signals that might be caused by planets, and then manually follow up to decide whether each signal is a planet or a false positive.
To avoid being overwhelmed with more signals than they can manage, the scientists apply a cutoff to the automated detections: those with signal-to-noise ratios above a fixed threshold are deemed worthy of follow-up analysis, while all detections below the threshold are discarded.
The Google Brain team applies machine learning to a diverse variety of data, from human genomes to sketches to formal mathematical logic.
"Considering the massive amount of data collected by the Kepler telescope, we wondered what we might find if we used machine learning to analyse some of the previously unexplored Kepler data," Shallue said.
In collaboration with University of Texas at Austin in the US, the team developed a neural network to help search the low signal-to-noise detections for planets.
"We used a subset of around 15,000 of these signals, of which around 3,500 were verified planets or strong planet candidates, to train our neural network to distinguish planets from false positives," Shallue said.
The system was tested for its effectiveness by searching for new planets in a small set 670 stars.
"We chose these stars because they were already known to have multiple orbiting planets, and we believed that some of these stars might host additional planets that had not yet been detected," Shallue said.
"We allowed our search to include signals that were below the signal-to-noise threshold that astronomers had previously considered," he said.
Disclaimer: No Business Standard Journalist was involved in creation of this content
You’ve reached your limit of {{free_limit}} free articles this month.
Subscribe now for unlimited access.
Already subscribed? Log in
Subscribe to read the full story →
Smart Quarterly
₹900
3 Months
₹300/Month
Smart Essential
₹2,700
1 Year
₹225/Month
Super Saver
₹3,900
2 Years
₹162/Month
Renews automatically, cancel anytime
Here’s what’s included in our digital subscription plans
Exclusive premium stories online
Over 30 premium stories daily, handpicked by our editors


Complimentary Access to The New York Times
News, Games, Cooking, Audio, Wirecutter & The Athletic
Business Standard Epaper
Digital replica of our daily newspaper — with options to read, save, and share


Curated Newsletters
Insights on markets, finance, politics, tech, and more delivered to your inbox
Market Analysis & Investment Insights
In-depth market analysis & insights with access to The Smart Investor


Archives
Repository of articles and publications dating back to 1997
Ad-free Reading
Uninterrupted reading experience with no advertisements


Seamless Access Across All Devices
Access Business Standard across devices — mobile, tablet, or PC, via web or app
