Nuclear industry explores accident-resistant fuel

Image
AP Atlanta
Last Updated : Jun 15 2014 | 12:25 AM IST
The explosions that damaged a crippled Japanese nuclear plant during a disaster that forced mass evacuations in 2011 show what can happen when nuclear fuel overheats.
In response to the Fukushima Dai-ichi accident, the US government dramatically increased funding to develop tougher protective skins for nuclear fuel, hoping to spur innovation in designs that hadn't changed much in years. While the US Department of Energy was spending USD 2 million before the accident on future fuel designs, the funding reached as much as USD 30 million afterward.
Now scientists at multiple institutes are in the middle of developing designs that could start finding their way into test reactors as soon as this summer, followed by larger tests later on.
The goal is to create nuclear fuel that that is more resistant to damage and melting in extreme situations and less prone to a chemical reaction that makes its metal wrapping brittle and produces explosive hydrogen gas. If researchers succeed, their work could give plant workers more time to keep an accident from spiraling into a meltdown that releases harmful radiation. The work is no cure-all to prevent accidents, but it's a way of reducing risk.
"It's basically buying time for the reactor," said Andrew Griffith, the Energy Department's director for fuel cycle research and development. "It's basically an insurance policy."
Scientists in the government- and industry-funded efforts are experimenting with multiple solutions before narrowing their focus on the most-promising technologies.
Nuclear fuel has remained similar for decades. Uranium dioxide is compressed into a pellet about the size of a fingertip. Those pellets are stacked into fuel rods up to 15 feet (4.5 meters) long and placed in a tube, called cladding, made from zirconium alloy. That metal cladding resists corrosion in a reactor, holds up against heat and serves as a barrier that keeps radioactive elements in place without cutting too much into the energy produced by a nuclear plant. Nuclear fuel is supposed to withstand accident conditions, but the disaster at the Fukushima Dai-ichi plant shows how it can fail when pushed to extremes.
After an earthquake, tsunami waves crashed over the plant's seawall and disabled the electrical gear needed to run reactor cooling systems. When the cooling systems and backups stopped working, the reactors overheated. As water levels dropped, the metal cladding around the fuel reacted with steam and oxidized, producing hydrogen gas. Scientists blame that escaping hydrogen gas for causing multiple explosions that damaged the facility.
*Subscribe to Business Standard digital and get complimentary access to The New York Times

Smart Quarterly

₹900

3 Months

₹300/Month

SAVE 25%

Smart Essential

₹2,700

1 Year

₹225/Month

SAVE 46%
*Complimentary New York Times access for the 2nd year will be given after 12 months

Super Saver

₹3,900

2 Years

₹162/Month

Subscribe

Renews automatically, cancel anytime

Here’s what’s included in our digital subscription plans

Exclusive premium stories online

  • Over 30 premium stories daily, handpicked by our editors

Complimentary Access to The New York Times

  • News, Games, Cooking, Audio, Wirecutter & The Athletic

Business Standard Epaper

  • Digital replica of our daily newspaper — with options to read, save, and share

Curated Newsletters

  • Insights on markets, finance, politics, tech, and more delivered to your inbox

Market Analysis & Investment Insights

  • In-depth market analysis & insights with access to The Smart Investor

Archives

  • Repository of articles and publications dating back to 1997

Ad-free Reading

  • Uninterrupted reading experience with no advertisements

Seamless Access Across All Devices

  • Access Business Standard across devices — mobile, tablet, or PC, via web or app

More From This Section

First Published: Jun 15 2014 | 12:25 AM IST

Next Story