Researchers performed behavioural experiments to test birds and humans and found that the cause of the slight multitasking advantage in birds is their higher neuronal density.
"For a long time, scientists used to believe the mammalian cerebral cortex to be the anatomical cause of cognitive ability; it is made up of six cortical layers," said Sara Letzner from Ruhr-University Bochum in Germany.
Also Read
"That means the structure of the mammalian cortex cannot be decisive for complex cognitive functions such as multitasking," said Letzner, researcher of the study published in the journal Current Biology.
The pallium of birds does not have any layers comparable to those in the human cortex, but its neurons are more densely packed than in the cerebral cortex in humans.
Pigeons, for example, have six times as many nerve cells as humans per cubic millimetre of brain, researchers said.
The average distance between two neurons in pigeons is fifty per cent shorter than in humans, they said.
As the speed at which nerve cell signals are transmitted is the same in both birds and mammals, researchers had assumed that information is processed more quickly in avian brains than in mammalian brains.
They tested this hypothesis using a multitasking exercise that was performed by 15 humans and 12 pigeons.
In the experiment, both the human and the avian participants had to stop a task in progress and switch over to an alternative task as quickly as possible.
The switchover to the alternative task was performed either at the same time the first task was stopped, or it was delayed by 300 milliseconds.
In the first case, real multitasking takes place, which means that two processes are running simultaneously in the brain, those being the stopping of the first task and switching over to the alternative task.
Pigeons and humans both slow down by the same amount under double stress.
In the second case - switching over to the alternative task after a short delay - the processes in the brain undergo a change.
The two processes, namely stopping the first task and switching over to the second task, alternate like in a ping- pong game.
For this purpose, the groups of nerve cells that control both processes have to continuously send signals back and forth.
The researchers had assumed that pigeons must have an advantage over humans because of their greater nerve cell density. They were, in fact, 250 milliseconds faster than humans.
"Researchers in the field of cognitive neuroscience have been wondering for a long time how it was possible that some birds, such as crows or parrots, are smart enough to rival chimpanzees in terms of cognitive abilities, despite their small brains and their lack of a cortex," said Letzner.
The results of the study provide a partial answer to this mystery. It is precisely because of their small brain that is densely packed with nerve cells that birds are able to reduce the processing time in tasks that require rapid interaction between different groups of neurons, researchers said.
(Only the headline and picture of this report may have been reworked by the Business Standard staff; the rest of the content is auto-generated from a syndicated feed.)
You’ve reached your limit of {{free_limit}} free articles this month.
Subscribe now for unlimited access.
Already subscribed? Log in
Subscribe to read the full story →
Smart Quarterly
₹900
3 Months
₹300/Month
Smart Essential
₹2,700
1 Year
₹225/Month
Super Saver
₹3,900
2 Years
₹162/Month
Renews automatically, cancel anytime
Here’s what’s included in our digital subscription plans
Exclusive premium stories online
Over 30 premium stories daily, handpicked by our editors


Complimentary Access to The New York Times
News, Games, Cooking, Audio, Wirecutter & The Athletic
Business Standard Epaper
Digital replica of our daily newspaper — with options to read, save, and share


Curated Newsletters
Insights on markets, finance, politics, tech, and more delivered to your inbox
Market Analysis & Investment Insights
In-depth market analysis & insights with access to The Smart Investor


Archives
Repository of articles and publications dating back to 1997
Ad-free Reading
Uninterrupted reading experience with no advertisements


Seamless Access Across All Devices
Access Business Standard across devices — mobile, tablet, or PC, via web or app
