The two phenomenon have combined to create a stupendous cosmic particle accelerator, researchers said.
By combining data from NASA's Chandra X-ray Observatory, the Giant Metrewave Radio Telescope (GMRT) in Pune and other telescopes, researchers found what happens when matter ejected by a giant black hole is swept up in the merger of two enormous galaxy clusters.
"We have seen each of these spectacular phenomena separately in many places," said Reinout van Weeren of the Harvard-Smithsonian Centre for Astrophysics (CfA) in the US, who led the study.
This cosmic double whammy is found in a pair of colliding galaxy clusters called Abell 3411 and Abell 3412 located about two billion light years from Earth.
The two clusters are both very massive, each weighing about a quadrillion - or a million billion - times the mass of the Sun.
The comet-shaped appearance of the X-rays detected by Chandra is produced by hot gas from one cluster plowing through the hot gas of the other cluster.
Optical data from the Keck Observatory and Japan's Subaru telescope, both on Mauna Kea, Hawaii, detected the galaxies in each cluster.
The powerful electromagnetic fields associated with this structure have accelerated some of the inflowing gas away from the vicinity of the black hole in the form of an energetic, high-speed jet.
These accelerated particles in the jet were accelerated again when they encountered colossal shock waves - cosmic versions of sonic booms generated by supersonic aircraft - produced by the collision of the massive gas clouds associated with the galaxy clusters.
"It's almost like launching a rocket into low-Earth orbit and then getting shot out of the Solar System by a second rocket blast," said Felipe Andrade-Santos, also of the CfA.
This discovery solves a long-standing mystery in galaxy cluster research about the origin of beautiful swirls of radio emission stretching for millions of light years, detected in Abell 3411 and Abell 3412 with the GMRT.
The team determined that as the shock waves travel across the cluster for hundreds of millions of years, the doubly accelerated particles produce giant swirls of radio emission.
The study appears in the journal Nature Astronomy.
Disclaimer: No Business Standard Journalist was involved in creation of this content
You’ve reached your limit of {{free_limit}} free articles this month.
Subscribe now for unlimited access.
Already subscribed? Log in
Subscribe to read the full story →
Smart Quarterly
₹900
3 Months
₹300/Month
Smart Essential
₹2,700
1 Year
₹225/Month
Super Saver
₹3,900
2 Years
₹162/Month
Renews automatically, cancel anytime
Here’s what’s included in our digital subscription plans
Exclusive premium stories online
Over 30 premium stories daily, handpicked by our editors


Complimentary Access to The New York Times
News, Games, Cooking, Audio, Wirecutter & The Athletic
Business Standard Epaper
Digital replica of our daily newspaper — with options to read, save, and share


Curated Newsletters
Insights on markets, finance, politics, tech, and more delivered to your inbox
Market Analysis & Investment Insights
In-depth market analysis & insights with access to The Smart Investor


Archives
Repository of articles and publications dating back to 1997
Ad-free Reading
Uninterrupted reading experience with no advertisements


Seamless Access Across All Devices
Access Business Standard across devices — mobile, tablet, or PC, via web or app
