Scientists unlock clues to HIV vaccine

Image
Press Trust of India Washington
Last Updated : Nov 01 2013 | 3:20 PM IST
In a breakthrough, scientists have mapped the most detailed images yet of the protein responsible for getting HIV into cells, paving way for a potential vaccine for AIDS.
The new findings of the AIDS-causing virus's complex envelope, includes sites that future vaccines will try to mimic to elicit a protective immune response.
Scientists at The Scripps Research Institute (TSRI) and Weill Cornell Medical College determined the first atomic-level structure of the tripartite HIV envelope protein-long considered one of the most difficult targets in structural biology and of great value for medical science.
"Most of the prior structural studies of this envelope complex focused on individual subunits; but we've needed the structure of the full complex to properly define the sites of vulnerability that could be targeted, for example with a vaccine," said Ian A Wilson, a senior author of the study.
HIV, the human immunodeficiency virus, currently infects about 34 million people globally, 10 per cent of whom are children, according to World Health Organisation estimates.
Although antiviral drugs are now used to manage many HIV infections, especially in developed countries, scientists have long sought a vaccine that can prevent new infections and perhaps ultimately eradicate the virus from the human population.
However, none of the HIV vaccines tested so far has come close to providing adequate protection. This failure is due largely to the challenges posed by HIV's envelope protein, known to virologists as Env.
Env's structure is so complex and delicate that scientists have had great difficulty obtaining the protein in a form that is suitable for the atomic-resolution imaging necessary to understand it.
"It tends to fall apart, for example, even when it's on the surface of the virus, so to study it we have to engineer it to be more stable," said biologist Andrew Ward.
The research team was able to engineer a version of the Env trimer (three-component structure) that has the stability and other properties needed for atomic-resolution imaging, yet retains virtually all the structures found on native Env.
Using cutting-edge imaging methods, electron microscopy and X-ray crystallography, the team was able to look at the new Env trimer.
The X-ray crystallography study was the first ever of an Env trimer, and both methods resolved the trimer structure to a finer level of detail than has been reported before.
The data illuminated the complex process by which the Env trimer assembles and later undergoes radical shape changes during infection and clarified how it compares to envelope proteins on other dangerous viruses, such as flu and Ebola.
The findings are published in the journal Science Express.
*Subscribe to Business Standard digital and get complimentary access to The New York Times

Smart Quarterly

₹900

3 Months

₹300/Month

SAVE 25%

Smart Essential

₹2,700

1 Year

₹225/Month

SAVE 46%
*Complimentary New York Times access for the 2nd year will be given after 12 months

Super Saver

₹3,900

2 Years

₹162/Month

Subscribe

Renews automatically, cancel anytime

Here’s what’s included in our digital subscription plans

Exclusive premium stories online

  • Over 30 premium stories daily, handpicked by our editors

Complimentary Access to The New York Times

  • News, Games, Cooking, Audio, Wirecutter & The Athletic

Business Standard Epaper

  • Digital replica of our daily newspaper — with options to read, save, and share

Curated Newsletters

  • Insights on markets, finance, politics, tech, and more delivered to your inbox

Market Analysis & Investment Insights

  • In-depth market analysis & insights with access to The Smart Investor

Archives

  • Repository of articles and publications dating back to 1997

Ad-free Reading

  • Uninterrupted reading experience with no advertisements

Seamless Access Across All Devices

  • Access Business Standard across devices — mobile, tablet, or PC, via web or app

More From This Section

First Published: Nov 01 2013 | 3:20 PM IST

Next Story