Scientists have used a combination of social media and transport data to predict the likelihood that a given retail business will succeed or fail.
Using information from ten different cities around the world, the researchers, led by the University of Cambridge in the UK, have developed a model that can predict with 80 per cent accuracy whether a new business will fail within six months.
While the retail sector has always been risky, the past several years have seen a transformation of high streets as more and more retailers fail, researchers said.
The model could be useful for both entrepreneurs and urban planners when determining where to locate their business or which areas to invest in.
"One of the most important questions for any new business is the amount of demand it will receive. This directly relates to how likely that business is to succeed," said Krittika D'Silva, a PhD student at Cambridge's Department of Computer Science and Technology.
"What sort of metrics can we use to make those predictions?" D'Silva said.
D'Silva and her colleagues used more than 74 million check-ins from the location-based social network Foursquare from Chicago, Helsinki, Jakarta, London, Los Angeles, New York, Paris, San Francisco, Singapore and Tokyo; and data from 181 million taxi trips from New York and Singapore.
Using this data, the researchers classified venues according to the properties of the neighbourhoods in which they were located, the visit patterns at different times of day, and whether a neighbourhood attracted visitors from other neighbourhoods.
"We wanted to better understand the predictive power that metrics about a place at a certain point in time have," said D'Silva.
Whether a business succeeds or fails is normally based on a number of controllable and uncontrollable factors. Controllable factors might include the quality or price of the store's product, its opening hours and its customer satisfaction.
Uncontrollable factors might include unemployment rates of a city, overall economic conditions and urban policies.
"We found that even without information about any of these uncontrollable factors, we could still use venue-specific, location-related and mobility-based features in predicting the likely demise of a business," said D'Silva.
The data showed that across all ten cities, venues that are popular around the clock, rather than just at certain points of day, are more likely to succeed.
Venues that are in demand outside of the typical popular hours of other venues in the neighbourhood tend to survive longer.
The data also suggested that venues in diverse neighbourhoods, with multiple types of businesses, tend to survive longer.
While the ten cities had certain similarities, the researchers also had to account for their differences.
"The metrics that were useful predictors vary from city to city, which suggests that factors affect cities in different ways," said D'Silva.
"As one example, that the speed of travel to a venue is a significant metric only in New York and Tokyo. This could relate to the speed of transit in those cities or perhaps to the rates of traffic," she said.
Disclaimer: No Business Standard Journalist was involved in creation of this content
You’ve reached your limit of {{free_limit}} free articles this month.
Subscribe now for unlimited access.
Already subscribed? Log in
Subscribe to read the full story →
Smart Quarterly
₹900
3 Months
₹300/Month
Smart Essential
₹2,700
1 Year
₹225/Month
Super Saver
₹3,900
2 Years
₹162/Month
Renews automatically, cancel anytime
Here’s what’s included in our digital subscription plans
Exclusive premium stories online
Over 30 premium stories daily, handpicked by our editors


Complimentary Access to The New York Times
News, Games, Cooking, Audio, Wirecutter & The Athletic
Business Standard Epaper
Digital replica of our daily newspaper — with options to read, save, and share


Curated Newsletters
Insights on markets, finance, politics, tech, and more delivered to your inbox
Market Analysis & Investment Insights
In-depth market analysis & insights with access to The Smart Investor


Archives
Repository of articles and publications dating back to 1997
Ad-free Reading
Uninterrupted reading experience with no advertisements


Seamless Access Across All Devices
Access Business Standard across devices — mobile, tablet, or PC, via web or app
