The world's most sophisticated science machines: LIGO

Image
AFP Washington
Last Updated : Feb 11 2016 | 10:28 PM IST
The machines that gave scientists their first-ever glimpse at gravitational waves are the most advanced detectors ever built for sensing tiny vibrations in the universe.
The two US-based underground detectors are known as the Laser Interferometer Gravitational-wave Observatory, or LIGO for short.
One is located in Hanford, Washington; the other 1,800 miles (3,000 kilometers) away in Livingston, Louisiana.
Construction began in 1999, and observations were taken from 2001 to 2007.
Then they underwent a major upgrade to make them 10 times more powerful.
The advanced LIGO detectors became fully operational for the first time in September 2015.

Also Read

In this case of this discovery, made on September 14, 2015, the detector in Louisiana first picked up the signal of a gravitational wave, originating 1.3 billion years ago in the southern sky.
Such waves are a measure of strain in space, an effect of the motion of large masses that stretches the fabric of space-time -- which is a way of viewing space and time as a single, interweaved continuum.
The detector in Washington picked up the same signal 7.1 milliseconds later, allowing scientists to confirm the finding was real and not just a glitch.
The ultra-sophisticated tools work by using huge laser interferometers -- each about 2.5 miles (four kilometers) long -- which are buried beneath the ground to allow the most precise measurements.
The L-shaped instruments track gravitational waves using the physics of laser light and space.
They do not rely on light in the skies like a telescope does.
Rather, they sense the vibrations in space, an advantage which allows them to uncover the properties of black holes.
"As a gravitational wave propagates through space it stretches space-time," said David Shoemaker, leader of the Advanced LIGO project at the Massachusetts Institute of Technology (MIT).
The detector, in short, "is just a big device for changing strain in space into an electrical signal."
One way to imagine the curvature of space and time is to imagine a ball falling on a trampoline.
The trampoline bows downward first, stretching the fabric vertically and shortening the sides.
Then as the ball bounces upward again, the horizontal movement of the fabric expands again.
The instrument acts like a transducer, changing that strain into changes in light -- and then into an electronic signal so scientists can digitize it and analyze it.
The LIGO detectors contain two very long arms that contain optical instruments for bending light, and are positioned like the letter L.
*Subscribe to Business Standard digital and get complimentary access to The New York Times

Smart Quarterly

₹900

3 Months

₹300/Month

SAVE 25%

Smart Essential

₹2,700

1 Year

₹225/Month

SAVE 46%
*Complimentary New York Times access for the 2nd year will be given after 12 months

Super Saver

₹3,900

2 Years

₹162/Month

Subscribe

Renews automatically, cancel anytime

Here’s what’s included in our digital subscription plans

Exclusive premium stories online

  • Over 30 premium stories daily, handpicked by our editors

Complimentary Access to The New York Times

  • News, Games, Cooking, Audio, Wirecutter & The Athletic

Business Standard Epaper

  • Digital replica of our daily newspaper — with options to read, save, and share

Curated Newsletters

  • Insights on markets, finance, politics, tech, and more delivered to your inbox

Market Analysis & Investment Insights

  • In-depth market analysis & insights with access to The Smart Investor

Archives

  • Repository of articles and publications dating back to 1997

Ad-free Reading

  • Uninterrupted reading experience with no advertisements

Seamless Access Across All Devices

  • Access Business Standard across devices — mobile, tablet, or PC, via web or app

More From This Section

First Published: Feb 11 2016 | 10:28 PM IST

Next Story