In a first of its kind study, researchers at University of Texas Southwestern Medical Center used whole-genome sequencing to evaluate a series of 258 cancer patients' genomes to improve the ability to diagnose cancer-predisposing mutations.
"Whole-genome sequencing is a new genetic tool that can determine more of a person's DNA sequence than ever before," said Dr Theodora Ross, Professor of Internal Medicine and Director of UT Southwestern's Cancer Genetics Programme.
"Our results show that nearly 90 per cent of clinically identified mutations were confidently detected and additional cancer gene mutations were discovered, which together with the decreasing costs associated with whole-genome sequencing means that this method will improve patient care, as well as lead to discovery of new cancer genes," Ross said.
Mutations in the BRCA1 and BRCA2 genes are the most common cause of hereditary breast cancer. BRCA gene mutations are best known for their breast cancer risk, but they also cause increased risk for ovarian, prostate, pancreatic, and other cancers.
In addition, there are many different genes, including ATM, CDH1, CHEK2, PALB2, PTEN, and TP53, that are associated with an increased risk for breast cancer, and researchers are continually discovering additional genes that may affect cancer predisposition.
Ross' team devised a method to compare the group of patients with BRCA1 or BRCA2 mutations to a group of patients without BRCA mutations.
All expected BRCA1 and BRCA2 mutations were detected in the BRCA group, with at least 88.6 per cent of mutations confidently detected. In contrast, different cancer gene mutations were found in the cohort without BRCA mutations.
"The results demonstrate that whole-genome sequencing can detect new cancer gene mutations in non-BRCA 'mystery' patients, demonstrating the added value whole-genome sequencing brings to the future cancer clinic," Ross said.
"In our study, sequencing allowed us to discover novel candidate cancer gene mutations in mystery patients," said Ross.
The study is published in the journal EBioMedicine.
You’ve reached your limit of {{free_limit}} free articles this month.
Subscribe now for unlimited access.
Already subscribed? Log in
Subscribe to read the full story →
Smart Quarterly
₹900
3 Months
₹300/Month
Smart Essential
₹2,700
1 Year
₹225/Month
Super Saver
₹3,900
2 Years
₹162/Month
Renews automatically, cancel anytime
Here’s what’s included in our digital subscription plans
Exclusive premium stories online
Over 30 premium stories daily, handpicked by our editors


Complimentary Access to The New York Times
News, Games, Cooking, Audio, Wirecutter & The Athletic
Business Standard Epaper
Digital replica of our daily newspaper — with options to read, save, and share


Curated Newsletters
Insights on markets, finance, politics, tech, and more delivered to your inbox
Market Analysis & Investment Insights
In-depth market analysis & insights with access to The Smart Investor


Archives
Repository of articles and publications dating back to 1997
Ad-free Reading
Uninterrupted reading experience with no advertisements


Seamless Access Across All Devices
Access Business Standard across devices — mobile, tablet, or PC, via web or app
